Model assessment, selection and averaging

Part 1: cross-validation
Part 2: projection predictive inference

Aki Vehtari
Aalto University, Finland

Slides and extra material at avehtari.github.io/masterclass/

Predicting concrete quality

Slides and extra material at avehtari.github.io/masterclass/

Predicting cancer recurrence

Tumor size (cm)	10
Mitotic count (per 50 HPFs ${ }^{7}$)	20
Tumor site	GASTRIC
Tumor rupture	NO
	CALCULATE!

```

\section*{Show risk tables}


Slides and extra material at avehtari.github.io/masterclass/

\section*{Model assessment, comparison, selection and averaging}
- Modeling complex phenomena with models that are much simpler than the nature ( \(M\)-open)

\section*{Model assessment, comparison, selection and averaging}
- Modeling complex phenomena with models that are much simpler than the nature ( \(M\)-open)
- Decision theoretical approch in spirit of
- Lindley, Box, Rubin, Bernardo \& Smith, etc.

\section*{Stan and loo package}

Computed from 4000 by 20 log-likelihood matrix


All Pareto \(k\) estimates are ok ( \(k<0.7\) ).
See help('pareto-k-diagnostic') for details.
Model comparison:
(negative 'elpd_diff' favors 1st model, positive favors 2nd)
\(\begin{array}{rr}\text { elpd_diff } & \text { se } \\ -0.2 & 0.1\end{array}\)

\section*{Outline}
- What is cross-validation
- Leave-one-out cross-validation (elpd_loo, p_loo)
- Uncertainty in LOO (SE)
- When is cross-validation applicable?
- data generating mechanisms and prediction tasks
- leave-many-out cross-validation
- Fast cross-validation
- PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
- K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging with Bayesian stacking

\section*{Outline}
- What is cross-validation
- Leave-one-out cross-validation (elpd_loo, p_loo)
- Uncertainty in LOO (SE)
- When is cross-validation applicable?
- data generating mechanisms and prediction tasks
- leave-many-out cross-validation
- Fast cross-validation
- PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
- K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging with Bayesian stacking
- Part 2: Projective Inference in High-dimensional Problems: Prediction and Feature Selection


True mean and sigma



Posterior mean


Posterior mean, alternative data realisation


Posterior mean


Posterior draws


Posterior predictive distribution


Posterior predictive distribution

\[
p(\tilde{y} \mid \tilde{x}=18, x, y)=\int p(\tilde{y} \mid \tilde{x}=18, \theta) p(\theta \mid x, y) d \theta
\]

New data


Posterior predictive distribution


Leave-one-out mean


Leave-one-out residual


Leave-one-out residual

\(y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]\)

Leave-one-out residual

\(y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]\)
Can be use to compute, e.g., RMSE, \(R^{2}, 90 \%\) error

Leave-one-out residual

\(y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]\)
Can be use to compute, e.g., RMSE, \(R^{2}, 90 \%\) error
See LOO- \(R^{2}\) at avehtari.github.io/bayes_R2/bayes_R2.html



Posterior predictive density


Posterior predictive density

\[
p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07
\]

Leave-one-out predictive density

\[
\begin{aligned}
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07 \\
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x_{-18}, y_{-18}\right) \approx 0.03
\end{aligned}
\]

Leave-one-out predictive densities

\(p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right), \quad i=1, \ldots, 20\)

Leave-one-out log predictive densities

\(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right), \quad i=1, \ldots, 20\)

Leave-one-out log predictive densities

\(\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)

Leave-one-out log predictive densities

elpd_loo \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)

Leave-one-out log predictive densities

elpd_loo \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)
unbiased estimate of \(\log\) posterior pred. density for new data

Leave-one-out log predictive densities

elpd_loo \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)
\(\mathrm{lpd}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8\)

Leave-one-out log predictive densities

elpd_loo \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)
lpd \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8\)
p_loo \(=\) lpd - elpd_loo \(\approx 2.7\)

Leave-one-out log predictive densities

elpd_loo \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)
\(\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3\)

\section*{Leave-one-out log predictive densities}

elpd_loo \(=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5\)
\(\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3\)
see Vehtari, Gelman \& Gabry (2017a) and Vehtari \& Ojanen (2012) for more

Fixed / designed \(x\)


LOO is ok for fixed / designed \(x\). SE is uncertainty about \(y \mid x\).
see Vehtari \& Ojanen (2012) and andrewgelman.com/2018/08/03/ loo-cross-validation-approaches-valid/

\section*{Distribution for x}


LOO is ok for random \(x\). SE is uncertainty about \(y \mid x\) and \(x\).
see Vehtari \& Ojanen (2012) and andrewgelman.com/2018/08/03/ loo-cross-validation-approaches-valid/

\section*{Distribution for x}


LOO is ok for random \(x\). SE is uncertainty about \(y \mid x\) and \(x\). Covariate shift can be handled with importance weighting or modelling see Vehtari \& Ojanen (2012) and andrewgelman.com/2018/08/03/ loo-cross-validation-approaches-valid/

\section*{loo package}

Computed from 4000 by 20 log-likelihood matrix
\begin{tabular}{lrr} 
& Estimate & SE \\
elpd_loo & -29.5 & 3.3 \\
p_loo & 2.7 & 1.0
\end{tabular}

Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:
Count Pct. Min. n_eff
(-Inf, 0.5] (good) 18 90.0\% 899
(0.5, 0.7] (ok) 2 10.0\% 459
\begin{tabular}{lllll}
\((0.7,1]\) & \((\) bad \()\) & 0 & \(0.0 \%\) & \(<N A>\) \\
\((1\), Inf) & (very bad) & 0 & \(0.0 \%\) & \(<N A>\)
\end{tabular}

All Pareto \(k\) estimates are ok ( \(k<0.7\) ).
See help('pareto-k-diagnostic') for details.


Nonlinear model fit


Nonlinear model fit + new data


Nonlinear model fit + new data


Extrapolation is more difficult


Can LOO or other cross-validation be used with time series?


Leave-one-out cross-validation is ok for assessing conditional model

leave-future-out cross-validation is better for predicting future

m -step-ahead cross-validation is better for predicting further future

m-step-ahead leave-a-block-out cross-validation

Rats data


Can LOO or other cross-validation be used with hierarchical data?


Yes!

1-step-ahead?


Yes!

Leave-one-time-point-out?


Yes!

Leave-one-rat-out?


Yes!

\section*{Predict given initial weight?}


Yes!

\section*{Summary of data generating mechanisms and prediction tasks}
- You have to make some assumptions on data generating mechanism
- Use the knowledge of the prediction task if available
- Cross-validation can be used to analyse different parts, even if there is no clear prediction task
see Vehtari \& Ojanen (2012) and andrewgelman.com/2018/08/03/ loo-cross-validation-approaches-valid/

\section*{Fast cross-validation}
- Pareto smoothed importance sampling LOO (PSIS-LOO)
- K-fold cross-validation


\section*{Posterior draws}

\[
\theta^{(s)} \sim p(\theta \mid x, y)
\]

Posterior predictive distribution


Posterior predictive distribution


PSIS-LOO weighted draws

\[
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right)
\end{aligned}
\]

PSIS-LOO weighted draws

\[
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)
\end{aligned}
\]

PSIS-LOO weighted draws


PSIS-LOO weighted predictive distribution

\[
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)
\end{aligned}
\]

PSIS-LOO weighted predictive distribution

\[
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right) \\
& p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx \sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]
\end{aligned}
\]

PSIS-LOO weighted predictive distribution

\(\theta^{(s)} \sim p(\theta \mid x, y)\)
\(r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\)
\(p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx \sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]\), where \(w \leftarrow \operatorname{PSIS}(r)\)

400 importance weights for leave-18th-out


4000 importance weights for leave-18th-out


4000 importance weights for leave-18th-out

see Vehtari, Gelman \& Gabry (2017b)
Aki.Vehtari@aalto.fi - @avehtari

4000 importance weights for leave-18th-out

n_eff \(\approx 459\)
Pareto \(\hat{k} \approx 0.52\)
- Pareto \(\hat{k}\) estimates the tail shape which determines the convergence rate of PSIS. Less than 0.7 is ok.
see Vehtari, Gelman \& Gabry (2017b)

PSIS-LOO diagnostics


PSIS-LOO diagnostics


Pareto \(k\) diagnostic values:
Count Pct. Min. n_eff
\(\begin{array}{rlrrl}(-\operatorname{Inf}, 0.5] & \text { (good) } & 18 & 90.0 \% & 899 \\ (0.5,0.7] & \text { (ok) } & 2 & 10.0 \% & 459 \\ (0.7,1] & \text { (bad) } & 0 & 0.0 \% & \text { <NA> } \\ (1, \text { Inf }) & \text { (very bad) } & 0 & 0.0 \% & \text { <NA> }\end{array}\)

Aki.Vehtari@aalto.fi - @avehtari

PSIS-LOO diagnostics


Observation left out
Pareto \(k\) diagnostic values:
Count Pct. Min. n_eff
\(\begin{array}{rlrrl}(-\operatorname{Inf}, 0.5] & \text { (good) } & 18 & 90.0 \% & 899 \\ (0.5,0.7] & \text { (ok) } & 2 & 10.0 \% & 459 \\ (0.7,1] & \text { (bad) } & 0 & 0.0 \% & \text { <NA> } \\ (1, \text { Inf }) & \text { (very bad) } & 0 & 0.0 \% & \text { <NA> }\end{array}\)

Aki.Vehtari@aalto.fi - @avehtari

\section*{loo package}

\section*{Computed from 4000 by 20 log-likelihood matrix}
\begin{tabular}{lrr} 
& Estimate & SE \\
elpd_loo & -29.5 & 3.3 \\
p_loo & 2.7 & 1.0
\end{tabular}

Monte Carlo SE of elpd_loo is 0.1.
Pareto \(k\) diagnostic values:
\begin{tabular}{|c|c|c|c|c|}
\hline & & Count & Pct. & Min \\
\hline (-Inf, 0.5] & (good) & 18 & 90.0\% & 899 \\
\hline (0.5, 0.7] & ( ok) & 2 & 10.0\% & 459 \\
\hline (0.7, 1] & (bad) & 0 & 0.0\% & <NA> \\
\hline (1, Inf) & (very bad) & 0 & 0.0\% & <NA> \\
\hline
\end{tabular}

All Pareto \(k\) estimates are ok ( \(k<0.7\) ).
See help('pareto-k-diagnostic') for details.
see more in Vehtari, Gelman \& Gabry (2017b)

\section*{Stan code}
\[
\log \left(r_{i}^{(s)}\right)=\log \left(1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right)=-\log \_\operatorname{lik}[i]
\]

\section*{Stan code}
\(\log \left(r_{i}^{(s)}\right)=\log \left(1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right)=-\log _{-} \operatorname{lik}[i]\)
```

model {

```
alpha ~ normal(pmualpha, psalpha); beta ~ normal(pmubeta, psbeta);
y ~ normal(mu, sigma);
\}
generated quantities \{
vector[N] log_lik;
for ( i in \(1: \mathrm{N}\) )
```

log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);

```
\}

\section*{Stan code}
\[
\log \left(r_{i}^{(s)}\right)=\log \left(1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right)=-\log _{-} \operatorname{lik}[i]
\]
```

model {
alpha ~ normal(pmualpha, psalpha);
beta ~ normal(pmubeta, psbeta);
y ~ normal(mu, sigma);
}
generated quantities {
vector[N] log_lik;
for (i in 1:N)
log_lik[i] = normal__lpdf(y[i] | mu[i], sigma);
}

```
- RStanARM and BRMS compute log_lik by default

\section*{Pareto smoothed importance sampling LOO}
- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration

\section*{Pareto smoothed importance sampling LOO}
- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- PSIS-LOO for non-factorizable models
- mc-stan.org/loo/articles/loo2-non-factorizable.html

\section*{Pareto smoothed importance sampling LOO}
- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- PSIS-LOO for non-factorizable models
- mc-stan.org/loo/articles/loo2-non-factorizable.html
- PSIS-LOO for time series
- Approximate leave-future-out cross-validation mc-stan.org/loo/articles/loo2-lfo.html

Data


AR-2 prediction with \(95 \%\) interval


PSIS-1-step-ahead


PSIS-1-step-ahead with refits

mc-stan.org/loo/articles/loo2-lfo.html

\section*{K-fold cross-validation}
- K-fold cross-validation can approximate LOO
- all uses for LOO
- K-fold cross-validation can be used for hierarchical models
- good for leave-one-group-out
- K-fold cross-validation can be used for time series
- with leave-block-out

Balance k-fold approximation of LOO


Balance k-fold approximation of LOO


Random k-fold approximation of LOO


Random kfold approximation of LOO



Aki.Vehtari@aalto.fi - @avehtari

kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

\section*{WAIC vs PSIS-LOO}

\section*{see Vehtari, Gelman \& Gabry (2017a)}

Aki.Vehtari@aalto.fi - @avehtari

\section*{WAIC vs PSIS-LOO}
- WAIC has same assumptions as LOO

\section*{WAIC vs PSIS-LOO}
- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate

\section*{WAIC vs PSIS-LOO}
- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics

\section*{WAIC vs PSIS-LOO}
- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K -fold-CV is needed instead

WAIC vs PSIS-LOO
- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead
- Multiplying by -2 doesn't give any benefit (Watanabe didn't multiply by -2)
- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is an approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

\section*{Marginal likelihood / Bayes factor}
- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations

\section*{Marginal likelihood / Bayes factor}
- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations


\section*{Marginal likelihood / Bayes factor}
- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations
- which makes it very sensitive to prior


\section*{Marginal likelihood / Bayes factor}
- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models





\section*{Marginal likelihood / Bayes factor}
- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically





\section*{Cross-validation for model assessment}
- CV is good for model assessment when application specific utility/cost functions are used
- e.g. 90\% absolute error

\section*{Cross-validation for model assessment}
- CV is good for model assessment when application specific utility/cost functions are used
- e.g. 90\% absolute error
- Also useful in model checking in similar way as posterior predictive checking (PPC)
- model misspecification diagnostics (e.g. Pareto-k and p_loo)
- checking calibration of leave-one-out predictive posteriors (ppc_loo_pit in bayesplot)
see demos avehtari.github.io/modelselection/

\section*{Sometimes cross-validation is not needed}

\section*{Sometimes cross-validation is not needed}
- Posterior predictive checking is often sufficient



Predicting the yields of mesquite bushes.
Gelman, Hill \& Vehtari (2019): Regression and Other Stories, Chapter 11.

\section*{Sometimes cross-validation is not needed}
- Posterior predictive checking is often sufficient



Predicting the yields of mesquite bushes.
Gelman, Hill \& Vehtari (2019): Regression and Other Stories, Chapter 11.
- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2018). Visualization in Bayesian workflow. JRSS A, preprint arXiv:1709.01449
- mc-stan.org/bayesplot/articles/graphical-ppcs.html
- betanalpha.github.io/assets/case_studies/principled_bayesian_ workflow.html

\section*{Model comparison}
- "A popular hypothesis has it that primates with larger brains produce more energetic milk, so that brains can grow quickly" (from Statistical Rethinking)
- Model 1: formula = kcal.per.g ~ neocortex
- Model 2: formula = kcal.per.g ~neocortex + log(mass)

Pointwise comparison LOO models: Model 1


Pointwise comparison LOO models: Model 1


Model 1 elpd_loo \(\approx 3.7\), SE=1.8
Model 2 elpd_loo \(\approx 8.4\), SE=2.8

Pointwise comparison LOO models: Model 1


Model 1 elpd_loo \(\approx 3.7\), \(\mathrm{SE}=1.8\)
Model 2 elpd_loo \(\approx 8.4\), SE=2.8

\section*{Pointwise comparison LOO models}


Model comparison:
(negative 'elpd_diff' favors 1st model, positive favors 2nd)
\(\begin{array}{rr}\text { elpd_diff } & \text { se } \\ 4.7 & 2.7\end{array}\)

\section*{Sometimes cross-validation is not needed}
- Posterior predictive checking is often sufficient



Predicting the yields of mesquite bushes.
Gelman, Hill \& Vehtari (2019): Regression and Other Stories, Chapter 11.
- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2018). Visualization in Bayesian workflow. JRSS A, preprint arXiv:1709.01449
- mc-stan.org/bayesplot/articles/graphical-ppcs.html
- betanalpha.github.io/assets/case_studies/principled_bayesian_ workflow.html

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)
- see predictive model selection in \(M\)-closed case by San Martini and Spezzaferri (1984)

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)
- see predictive model selection in \(M\)-closed case by San Martini and Spezzaferri (1984)
- but you should not force your design of experiment or analysis to stay in the simplified world

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)
- see predictive model selection in \(M\)-closed case by San Martini and Spezzaferri (1984)
- but you should not force your design of experiment or analysis to stay in the simplified world
- For fully non-parametric models you may assume that true model is included in the list of models considered ( \(M\)-closed)

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)
- see predictive model selection in \(M\)-closed case by San Martini and Spezzaferri (1984)
- but you should not force your design of experiment or analysis to stay in the simplified world
- For fully non-parametric models you may assume that true model is included in the list of models considered ( \(M\)-closed)
- related to talk by Chris Holmes
- see Vehtari \& Ojanen (2012) for earlier references

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)
- see predictive model selection in \(M\)-closed case by San Martini and Spezzaferri (1984)
- but you should not force your design of experiment or analysis to stay in the simplified world
- For fully non-parametric models you may assume that true model is included in the list of models considered ( \(M\)-closed)
- related to talk by Chris Holmes
- see Vehtari \& Ojanen (2012) for earlier references
- posterior convergence rate can be slow for fully non-parametric models

\section*{Sometimes cross-validation is not needed}
- For some very simple cases you may assume that true model is included in the list of models considered ( \(M\)-closed)
- see predictive model selection in \(M\)-closed case by San Martini and Spezzaferri (1984)
- but you should not force your design of experiment or analysis to stay in the simplified world
- For fully non-parametric models you may assume that true model is included in the list of models considered ( \(M\)-closed)
- related to talk by Chris Holmes
- see Vehtari \& Ojanen (2012) for earlier references
- posterior convergence rate can be slow for fully non-parametric models
- In nested case, often easier and more accurate to analyse posterior distribution of more complex model directly avehtari.github.io/modelselection/betablockers.html

\section*{What if one is not clearly better than others?}

\section*{What if one is not clearly better than others?}
- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/

\section*{What if one is not clearly better than others?}
- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking?

Part 2 and mc-stan.org/loo/articles/loo2-example.html

\section*{What if one is not clearly better than others?}
- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking?

Part 2 and mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/

\section*{What if one is not clearly better than others?}
- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- sparse priors like regularized horseshoe prior instead of variable selection video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking?

Part 2 and mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/
- In a nested case choose more complex if you want to take into account all the uncertainties.
andrewgelman.com/2018/07/26/ parsimonious-principle-vs-integration-uncertainties/

\section*{Bayesian stacking}
- Consider the model averaging as a decision problem with aim of maximizing the predictive performance

\section*{Bayesian stacking}
- Consider the model averaging as a decision problem with aim of maximizing the predictive performance
- Maximize the scoring rule of the predictive distribution for future \(\tilde{y}\)
\[
\max _{w} S\left(\sum_{k=1}^{K} w_{k} p\left(\tilde{y} \mid x, y, M_{k}\right), p_{t}(\tilde{y})\right)
\]

\section*{Bayesian stacking}
- Consider the model averaging as a decision problem with aim of maximizing the predictive performance
- Maximize the scoring rule of the predictive distribution for future \(\tilde{y}\)
\[
\max _{w} S\left(\sum_{k=1}^{K} w_{k} p\left(\tilde{y} \mid x, y, M_{k}\right), p_{t}(\tilde{y})\right)
\]
- As we don't know \(p_{t}(\tilde{y})\), we approximate with LOO

\section*{Bayesian stacking}
- Consider the model averaging as a decision problem with aim of maximizing the predictive performance
- Maximize the scoring rule of the predictive distribution for future \(\tilde{y}\)
\[
\max _{w} S\left(\sum_{k=1}^{K} w_{k} p\left(\tilde{y} \mid x, y, M_{k}\right), p_{t}(\tilde{y})\right)
\]
- As we don't know \(p_{t}(\tilde{y})\), we approximate with LOO
- We define the stacking weights as the solution to the following optimization problem:
\[
\begin{array}{r}
\max _{w} \frac{1}{n} \sum_{i=1}^{n} S\left(\sum_{k=1}^{K} w_{k} \hat{p}\left(y_{i} \mid x_{-i}, y_{-i}, M_{k}\right)\right) \\
\text { s.t. } \quad w_{k} \geq 0, \quad \sum_{k=1}^{K} w_{k}=1
\end{array}
\]

\section*{Bayesian stacking}
- The combined estimation of the predictive density is
\[
\hat{p}(\tilde{y} \mid x, y)=\sum_{k=1}^{K} \hat{w}_{k} p\left(\tilde{y} \mid x, y, M_{k}\right)
\]

\section*{Bayesian stacking}
- The combined estimation of the predictive density is
\[
\hat{p}(\tilde{y} \mid x, y)=\sum_{k=1}^{K} \hat{w}_{k} p\left(\tilde{y} \mid x, y, M_{k}\right)
\]
- When using log-score (corresponding to Kullback-Leibler divergence), we call this stacking of predictive distributions:
\[
\begin{array}{r}
\max _{w} \frac{1}{n} \sum_{i=1}^{n} \log \sum_{k=1}^{K} w_{k} p\left(y_{i} \mid x_{-i}, y_{-i}, M_{k}\right) \\
\text { s.t. } \quad w_{k} \geq 0, \quad \sum_{k=1}^{K} w_{k}=1 .
\end{array}
\]

\section*{Bayesian stacking}
- The combined estimation of the predictive density is
\[
\hat{p}(\tilde{y} \mid x, y)=\sum_{k=1}^{K} \hat{w}_{k} p\left(\tilde{y} \mid x, y, M_{k}\right)
\]
- When using log-score (corresponding to Kullback-Leibler divergence), we call this stacking of predictive distributions:
\[
\begin{array}{r}
\max _{w} \frac{1}{n} \sum_{i=1}^{n} \log \sum_{k=1}^{K} w_{k} p\left(y_{i} \mid x_{-i}, y_{-i}, M_{k}\right) \\
\text { s.t. } \quad w_{k} \geq 0, \quad \sum_{k=1}^{K} w_{k}=1
\end{array}
\]
- We can approximate \(p\left(y_{i} \mid x_{-i}, y_{-i}, M_{k}\right)\) with PSIS-LOO

\section*{Bayesian stacking}
- The combined estimation of the predictive density is
\[
\hat{p}(\tilde{y} \mid x, y)=\sum_{k=1}^{K} \hat{w}_{k} p\left(\tilde{y} \mid x, y, M_{k}\right)
\]
- When using log-score (corresponding to Kullback-Leibler divergence), we call this stacking of predictive distributions:
\[
\begin{array}{r}
\max _{w} \frac{1}{n} \sum_{i=1}^{n} \log \sum_{k=1}^{K} w_{k} p\left(y_{i} \mid x_{-i}, y_{-i}, M_{k}\right) \\
\text { s.t. } \quad w_{k} \geq 0, \quad \sum_{k=1}^{K} w_{k}=1 .
\end{array}
\]
- We can approximate \(p\left(y_{i} \mid x_{-i}, y_{-i}, M_{k}\right)\) with PSIS-LOO
- Other cross-validation structures can be used, too

\section*{Gaussian mixture example}
\(y \sim \mathrm{~N}(3.4,1), \quad p_{k}=\mathrm{N}(k, 1)\) with \(k=1, \ldots, 8\)

\section*{Gaussian mixture example}
\(y \sim \mathrm{~N}(3.4,1), \quad p_{k}=\mathrm{N}(k, 1)\) with \(k=1, \ldots, 8\)
Model averaged predictive distributions



\section*{Gaussian mixture example}
\(y \sim N(3.4,1), \quad p_{k}=\mathrm{N}(k, 1)\) with \(k=1, \ldots, 8\)
( \(a, b\) ) Stacking of predictive distributions vs. BMA


\section*{Gaussian mixture example}
\(y \sim \mathrm{~N}(3.4,1), \quad p_{k}=\mathrm{N}(k, 1)\) with \(k=1, \ldots, 8\)
(a, b) Stacking of predictive distributions vs. BMA

(c) Dilutation of prior by adding copies of \(\mathrm{N}(4,1)\) to the model space

\section*{Linear subset regression example \(k\)}
\(y \sim \mathrm{~N}(\mu, 1), \quad \mu=\beta_{1} X_{1}+\ldots \beta_{15} X_{15}\)
\(\beta_{j}=\gamma\left(\left(1_{|j-4|<h}(h-|j-4|)^{2}+\left(1_{|j-8|<h}\right)(h-|j-8|)^{2}+\left(1_{|j-12|<h}\right)(h-|j-12|)^{2}\right)\right.\)

\section*{Linear subset regression example \(k\)}
\(y \sim \mathrm{~N}(\mu, 1), \quad \mu=\beta_{1} X_{1}+\ldots \beta_{15} X_{15}\)
Non-nested \(M\)-open case with \(M_{k}: \mathrm{N}\left(\beta_{k} X_{k}, \sigma\right)\)

\section*{Linear subset regression example \(k\)}
\(y \sim \mathrm{~N}(\mu, 1), \quad \mu=\beta_{1} X_{1}+\ldots \beta_{15} X_{15}\)
Non-nested \(M\)-open case with \(M_{k}: \mathrm{N}\left(\beta_{k} X_{k}, \sigma\right)\)




(a) Stacking, (b) BMA, (d) model selection by LOO and BF

Aki.Vehtari@aalto.fi - @avehtari

Linear subset regression example \(1: k\)
\(y \sim N(\mu, 1), \quad \mu=\beta_{1} X_{1}+\ldots \beta_{15} X_{15}\)
Nested \(M\)-closed case with \(M_{k}: N\left(\sum_{j=1}^{k} \beta_{j} X_{j}, \sigma\right)\)

Linear subset regression example \(1: k\) \(y \sim N(\mu, 1), \quad \mu=\beta_{1} X_{1}+\ldots \beta_{15} x_{15}\)
Nested \(M\)-closed case with \(M_{k}: N\left(\sum_{j=1}^{k} \beta_{j} X_{j}, \sigma\right)\)




(a) Stacking, (b) BMA, (d) model selection by LOO and BF

\section*{Variational multimodal example}

Stacking of predictive distributions can be helpful also in case of multimodal posteriors




\section*{Bayesian stacking}
- In M-open case works better than BMA
- In M-closed case can have a better small sample performance than BMA

\section*{Bayesian stacking}
- In M-open case works better than BMA
- In M-closed case can have a better small sample performance than BMA
- Should be used only for model averaging
- you may drop models with 0 weights
- you shouldn't choose the model with largest weight unless it's 1
- Yao, Vehtari, Simpson, \& Gelman (2018)

\section*{Cross-validation and model selection}
- Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear

\section*{Cross-validation and model selection}
- Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear
- Do not use cross-validation to choose from a large set of models
- selection process leads to overfitting

\section*{Cross-validation and model selection}
- Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear
- Do not use cross-validation to choose from a large set of models
- selection process leads to overfitting
- Overfitting in selection process is not unique for cross-validation

\section*{Selection induced bias and overfitting}
- Selection induced bias in cross-validation
- same data is used to assess the performance and make the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognised already, e.g., by Stone (1974)

\section*{Selection induced bias and overfitting}
- Selection induced bias in cross-validation
- same data is used to assess the performance and make the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognised already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

\section*{Selection induced bias and overfitting}
- Selection induced bias in cross-validation
- same data is used to assess the performance and make the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognised already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

\section*{Selection induced bias in variable selection}


Piironen \&
Vehtari (2017)

\section*{Take-home messages (part 1)}
- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

\section*{Take-home messages (part 1)}
- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

\section*{Take-home messages (part 1)}
- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

\section*{Take-home messages (part 1)}
- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

\section*{Take-home messages (part 1)}
- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

\section*{Part 2: Projective Inference in High-dimensional Problems: Prediction and Feature Selection}

\section*{High dimensional small data}
- In the examples \(n=54 \ldots 102, p=1536 \ldots 22283\)
- could scale to bigger \(n\) and bigger \(p\)

\section*{High dimensional small data}
- In the examples \(n=54 \ldots 102, p=1536 \ldots 22283\)
- could scale to bigger \(n\) and bigger \(p\)
- Priors necessary
- shrinkage priors, hierarchical shrinkage priors
- dimension reduction with factor models

\section*{High dimensional small data}
- In the examples \(n=54 \ldots 102, p=1536 \ldots 22283\)
- could scale to bigger \(n\) and bigger \(p\)
- Priors necessary
- shrinkage priors, hierarchical shrinkage priors
- dimension reduction with factor models
- The main content of this part: Two stage approach
- Construct a best predictive model you can \(\Rightarrow\) reference model
- Feature selection and post-selection inference \(\Rightarrow\) projection

\section*{Rich model vs feature selection?}
- If we care only about the predictive performance
- Include all available prior information
- Integrate over all uncertainties
- No need for feature selection

\section*{Rich model vs feature selection?}
- If we care only about the predictive performance
- Include all available prior information
- Integrate over all uncertainties
- No need for feature selection
- Variable selection can be useful if
- need to reduce measurement or computation cost in the future
- improve explainability

\section*{Rich model vs feature selection?}
- If we care only about the predictive performance
- Include all available prior information
- Integrate over all uncertainties
- No need for feature selection
- Variable selection can be useful if
- need to reduce measurement or computation cost in the future
- improve explainability
- Two options for variable selection
- Find a minimal subset of features that yield a good predictive model
- Identify all features that have predictive information

\section*{Regularized horseshoe prior}
- Horseshoe: can be seen as continuos version of spike-and-slab with infinite width slab
- no shrinkage \(\left(\kappa_{j} \rightarrow 0\right)\) allows complete separation in logistic model with \(n \ll p\)



\section*{Regularized horseshoe prior}
- Horseshoe: can be seen as continuos version of spike-and-slab with infinite width slab
- no shrinkage \(\left(\kappa_{j} \rightarrow 0\right)\) allows complete separation in logistic model with \(n \ll p\)


- Regularized horseshoe: adds additional finite width slab
- some minimal shrinkage ( \(\kappa_{j}>0\) ) for relevant features, but maintains division to relevant and non-relevant features



Aki.Vehtari@aalto.fi - @avehtari

\section*{Regularized horseshoe}
- Piironen and Vehtari (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. In Electronic Journal of Statistics, 11(2):5018-5051. Online
- regularized horseshoe
- how to set the prior based on the sparsity assumption

\section*{Why shrinkage priors alone do not solve the variable selection problem}
- A common strategy:
- Fit model with a shrinkage prior
- Select variables based on marginal posteriors (of the regression coefficients)

\section*{Why shrinkage priors alone do not solve the variable selection problem}
- A common strategy:
- Fit model with a shrinkage prior
- Select variables based on marginal posteriors (of the regression coefficients)
- Problems
- Marginal posteriors are difficult with correlated features
- How to do post-selection inference correctly?

\section*{Example}

\section*{Consider data}
\[
\begin{array}{rlr}
f & \sim \mathrm{~N}(0,1), & \\
y \mid f & \sim \mathrm{~N}(f, 1) & \\
x_{j} \mid f & \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 25, \\
x_{j} \mid & f \sim \mathrm{~N}(0,1), & j=26, \ldots, 50 .
\end{array}
\]

\section*{Example}

\section*{Consider data}
\[
\begin{aligned}
f & \sim \mathrm{~N}(0,1), \\
y \mid & \sim \mathrm{N}(f, 1) \\
x_{j} \mid f & \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), \\
x_{j} \mid f & \sim \mathrm{~N}(0,1),
\end{aligned} \quad j=1, \ldots, 25, \quad j=26, \ldots, 50 .
\]
- \(y\) are noisy observations about latent \(f\)

\section*{Example}

\section*{Consider data}
\[
\begin{array}{rlr}
f & \sim \mathrm{~N}(0,1), & \\
y \mid f & \sim \mathrm{~N}(f, 1) & \\
x_{j} \mid f & \sim \mathrm{~N}(\sqrt{ } \rho f, 1-\rho), & j=1, \ldots, 25, \\
x_{j} \mid f & \sim \mathrm{~N}(0,1), & j=26, \ldots, 50 .
\end{array}
\]
- \(y\) are noisy observations about latent \(f\)
- First \(p_{\mathrm{rel}}=25\) features are correlated with \(\rho\) and predictive about \(y\)

\section*{Example}

Consider data
\[
\begin{array}{rlr}
f & \sim \mathrm{~N}(0,1), & \\
y \mid f & \sim \mathrm{~N}(f, 1) & \\
x_{j} \mid f & \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 25, \\
x_{j} \mid f & \sim \mathrm{~N}(0,1), & j=26, \ldots, 50 .
\end{array}
\]
- \(y\) are noisy observations about latent \(f\)
- First \(p_{\text {rel }}=25\) features are correlated with \(\rho\) and predictive about \(y\)
- Remaining 25 features are irrelevant random noise

\section*{Example}

Consider data
\[
\begin{array}{rlr}
f & \sim \mathrm{~N}(0,1), & \\
y \mid & \sim \mathrm{N}(f, 1) & \\
x_{j} \mid & \sim \mathrm{N}(\sqrt{ } \rho f, 1-\rho), & j=1, \ldots, 25, \\
x_{j} \mid & f \sim \mathrm{~N}(0,1), & j=26, \ldots, 50 .
\end{array}
\]
- \(y\) are noisy observations about latent \(f\)
- First \(p_{\text {rel }}=25\) features are correlated with \(\rho\) and predictive about \(y\)
- Remaining 25 features are irrelevant random noise

Generate one data set \(\left\{x^{(i)}, y^{(i)}\right\}_{i=1}^{n}\) with \(n=50\) and \(\rho=0.8\) and assess the feature relevances

\section*{Example}

A) Gaussian prior, posterior median with \(50 \%\) and \(90 \%\) intervals

\section*{Example}


A) Gaussian prior, posterior median with \(50 \%\) and \(90 \%\) intervals B) Horseshoe prior, same things

\section*{Example}



A) Gaussian prior, posterior median with \(50 \%\) and \(90 \%\) intervals
B) Horseshoe prior, same things
C) Spike-and-slab prior, posterior inclusion probabilities

\section*{Example}



A) Gaussian prior, posterior median with \(50 \%\) and \(90 \%\) intervals
B) Horseshoe prior, same things
C) Spike-and-slab prior, posterior inclusion probabilities

Half of the features relevant, but all marginals substantially overlapping with zero

\section*{What happens?}


Aki.Vehtari@aalto.fi - @avehtari

\section*{What happens?}


Aki.Vehtari@aalto.fi - @avehtari

\section*{What happens?}


\section*{Focus on predictive performance}
- Two stage approach
- Construct a best predictive model you can \(\Rightarrow\) reference model
- Variable selection and post-selection inference \(\Rightarrow\) projection

\section*{Focus on predictive performance}
- Two stage approach
- Construct a best predictive model you can \(\Rightarrow\) reference model
- Variable selection and post-selection inference \(\Rightarrow\) projection
- Instead of looking at the marginals, find the minimal subset of features which have (almost) the same predictive performance as the reference model

\section*{Reference model improves variable selection}

Same data generating mechanism, but \(n=30, p=500, p_{\text {rel }}=150, \rho=0.5\).

irrelevant \(x_{j}\), relevant \(x_{j}\)
Sample correlation with \(y\)

Reference model improves variable selection

irrelevant \(x_{j}\), relevant \(x_{j}\)
A) Sample correlation with \(y\) vs. sample correlation with \(f\)

\section*{Reference model improves variable selection}


irrelevant \(x_{j}\), relevant \(x_{j}\)
A) Sample correlation with \(y\) vs. sample correlation with \(f\)
B) Sample correlation with \(y\) vs. sample correlation with \(f_{*}\) \(f_{*}=\) linear regression fit with 3 supervised principal components

\section*{(Iterative) Supervised Principal Components}
- Dimension reduction for high dimensional small data with highly correlating features
- dimension reduction helps to speed up later computation without discarding much information
- supervised means that features correlating with the target are favored in construcing the principal components
- Piironen and Vehtari (2018). Iterative supervised principal components. 21st AISTATS, PMLR 84:106-114. Online.

\section*{Predictive projection, idea}
- Model simplification technique

\section*{Predictive projection, idea}
- Model simplification technique
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible

\section*{Predictive projection, idea}
- Model simplification technique
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible
- Example constraints
- \(q(\theta)\) can have only point mass at some \(\theta_{0}\)
\(\Rightarrow\) "Optimal point estimates"

\section*{Predictive projection, idea}
- Model simplification technique
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible
- Example constraints
- \(q(\theta)\) can have only point mass at some \(\theta_{0}\)
\(\Rightarrow\) "Optimal point estimates"
- Some features must have exactly zero regression coefficient \(\Rightarrow\) "Which features can be discarded"

\section*{Predictive projection, idea}
- Model simplification technique
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible
- Example constraints
- \(q(\theta)\) can have only point mass at some \(\theta_{0}\)
\(\Rightarrow\) "Optimal point estimates"
- Some features must have exactly zero regression coefficient \(\Rightarrow\) "Which features can be discarded"
- The decision theoretic idea of conditioning the smaller model inference on the full model can be tracked to Lindley (1968)
- draw by draw projection introduced by Goutis \& Robert (1998), and Dupuis \& Robert (2003)
- see also many related references in a review by Vehtari \& Ojanen (2012)

\section*{Logistic regression with two features}


Full posterior for \(\beta_{1}\) and \(\beta_{2}\) and contours of predicted class probability

\section*{Logistic regression with two features}


Predictions


Projected point estimates for \(\beta_{1}\) and \(\beta_{2}\)

\section*{Logistic regression with two features}

\author{
Posterior
}



Projected point estimates, constraint \(\beta_{1}=0\)

\section*{Logistic regression with two features}

\author{
Posterior
}

Predictions



Projected point estimates, constraint \(\beta_{2}=0\)

\section*{Logistic regression with two features}

\author{
Posterior
}


Predictions


Draw-by-draw projection, constraint \(\beta_{1}=0\)

\section*{Logistic regression with two features}

\author{
Posterior
}



Draw-by-draw projection, constraint \(\beta_{2}=0\)

\section*{Predictive projection}
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible

\section*{Predictive projection}
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible
- As the full posterior \(p(\theta \mid D)\) is projected to \(q(\theta)\)
- the prior is also projected and there is no need to define priors for submodels separately

\section*{Predictive projection}
- Replace full posterior \(p(\theta \mid D)\) with some constrained \(q(\theta)\) so that the predictive distribution changes as little as possible
- As the full posterior \(p(\theta \mid D)\) is projected to \(q(\theta)\)
- the prior is also projected and there is no need to define priors for submodels separately
- even if we constrain some coefficients to be 0 , the predictive inference is conditoned on the information related features contributed to the reference model

\section*{Projective selection}
- How to select a feature combination?

\section*{Projective selection}
- How to select a feature combination?
- For a given model size, choose feature combination with minimal projective loss

\section*{Projective selection}
- How to select a feature combination?
- For a given model size, choose feature combination with minimal projective loss
- Search heuristics, e.g.
- Monte Carlo search
- Forward search
- \(L_{1}\)-penalization (as in Lasso)

\section*{Projective selection}
- How to select a feature combination?
- For a given model size, choose feature combination with minimal projective loss
- Search heuristics, e.g.
- Monte Carlo search
- Forward search
- \(L_{1}\)-penalization (as in Lasso)
- Use cross-validation to select the appropriate model size
- need to cross-validate over the search paths

\section*{Projective selection vs. Lasso}

Same simulated regression data as before, Â \(n=50, p=500, p_{\text {rel }}=150, \rho=0.5\)


\section*{Projective selection vs. Lasso}

Same simulated regression data as before, Â \(n=50, p=500, p_{\text {rel }}=150, \rho=0.5\)


\section*{Projective selection vs. Lasso}

Same simulated regression data as before, Â \(n=50, p=500, p_{\text {rel }}=150, \rho=0.5\)


\section*{Projective selection vs. Lasso}

Same simulated regression data as before, Â \(n=50, p=500, p_{\text {rel }}=150, \rho=0.5\)



\section*{Real data benchmarks}
\(n=54 \ldots 102, p=1536 \ldots . .22283\), Bayes SPC as the reference
Ovarian Colon Prostate Leukemia Glioma Average


\section*{Real data benchmarks}
\(n=54 \ldots 102, p=1536 \ldots . .22283\), Bayes SPC as the reference
Ovarian Colon Prostate Leukemia Glioma Average


\section*{Real data benchmarks}
\(n=54 \ldots 102, p=1536 \ldots . .22283\), Bayes SPC as the reference


\section*{Computation time}
\begin{tabular}{lccrrrr}
\hline Data set & \(n\) & \(p\) & \multicolumn{4}{c}{ Computation time } \\
\cline { 4 - 7 } & & & Bayes SPC & Projection & Lasso1 & Lasso2 \\
\hline Ovarian & 54 & 1536 & 30.4 & 3.6 & 1.3 & 0.2 \\
Colon & 62 & 2000 & 31.0 & 4.0 & 1.6 & 0.3 \\
Prostate & 102 & 5966 & 49.4 & 7.6 & 5.0 & 0.8 \\
Leukemia & 72 & 7129 & 47.0 & 6.3 & 5.6 & 0.7 \\
Glioma & 85 & 22283 & 95.8 & 14.2 & 15.6 & 2.6 \\
\hline
\end{tabular}

Table: Computation times: Average computation time (in seconds) over five repeated runs. In all cases the time contains the cross-validation of the tuning parameters and/or the model size. The first result for Lasso is computed using our software (projpred) whereas the second result (and that of ridge) is computed using the R-package glmnet which is more highly optimized.

\section*{Selection induced bias in variable selection}


\section*{Selection induced bias in variable selection}


Piironen \&
Vehtari (2017)

\section*{Bodyfat: small \(p\) example of projection predictive}

Predict bodyfat percentage. The reference value is obtained by immersing person in water. \(n=251\).

\section*{Bodyfat: small \(p\) example of projection predictive}

Predict bodyfat percentage. The reference value is obtained by immersing person in water. \(n=251\).


\section*{Bodyfat}

Marginal posteriors of coefficients


Aki.Vehtari@aalto.fi - @avehtari

\section*{Bodyfat}

Bivariate marginal of weight and height


Aki.Vehtari@aalto.fi - @avehtari

\section*{Bodyfat}

The predictive performance of the full and submodels


\section*{Bodyfat}

Marginals of projected posterior


Aki.Vehtari@aalto.fi - @avehtari

\section*{Bodyfat}

Projected posterior is not just the conditional of joint


\section*{Bodyfat}

Projected posterior is different than posterior conditioned only on selected features


\section*{Projection of Gaussian graphical models}
- Williams, Piironen, Vehtari, Rast (2018). Bayesian estimation of Gaussian graphical models with projection predictive selection. arXiv:1801.05725


CEU genetic network. BGL: Bayesian glasso; GL: glasso; TIGER: tuning insensitive graph estimation and regression; BMA: Bayesian model averaging; MAP: Maximum a posteriori; Projection: projection predictive

\section*{More results}
- More results projpred vs. Lasso and elastic net:

Piironen, Paasiniemi, Vehtari (2018). Projective Inference in
High-dimensional Problems: Prediction and Feature Selection.
arXiv:1810.02406
- More results projpred vs. marginal posterior probabilities:

Piironen and Vehtari (2017). Comparison of Bayesian predictive methods for model selection. Statistics and Computing, 27(3):711-735. doi:10.1007/s11222-016-9649-y.
- projpred for Gaussian graphical models:

Williams, Piironen, Vehtari, Rast (2018). Bayesian estimation of Gaussian graphical models with projection predictive selection. arXiv:1801.05725
- More results for Bayes SPC:

Piironen and Vehtari (2018). Iterative supervised principal components. 21st AISTATS, PMLR 84:106-114. Online.
- Several case studies for small to moderate dimensional ( \(p=4 \ldots 100\) ) small data:
Vehtari (2018). Model assesment, selection and inference after selection. https://avehtari.github.io/modelselection/

\section*{Take-home messages (part 2)}
- Sparse priors do not automate variable selection
- Don't trust marginal posteriors

\section*{Take-home messages (part 2)}
- Sparse priors do not automate variable selection
- Don't trust marginal posteriors
- Reference model + projection can improve feature selection
- Excellent tradeoff between accuracy and model complexity
- Useful also for identifying all the relevant features

\section*{Take-home messages (part 2)}
- Sparse priors do not automate variable selection
- Don't trust marginal posteriors
- Reference model + projection can improve feature selection
- Excellent tradeoff between accuracy and model complexity
- Useful also for identifying all the relevant features
- Well developed for GLMs, but can be used also with other model families

\section*{Take-home messages (part 2)}
- Sparse priors do not automate variable selection
- Don't trust marginal posteriors
- Reference model + projection can improve feature selection
- Excellent tradeoff between accuracy and model complexity
- Useful also for identifying all the relevant features
- Well developed for GLMs, but can be used also with other model families
- More details and results (+ some theoretical discussion) in the paper
- Piironen, Paasiniemi, Vehtari (2018). Projective Inference in High-dimensional Problems: Prediction and Feature Selection. arXiv:1810.02406

\section*{Take-home messages (part 2)}
- Sparse priors do not automate variable selection
- Don't trust marginal posteriors
- Reference model + projection can improve feature selection
- Excellent tradeoff between accuracy and model complexity
- Useful also for identifying all the relevant features
- Well developed for GLMs, but can be used also with other model families
- More details and results (+ some theoretical discussion) in the paper
- Piironen, Paasiniemi, Vehtari (2018). Projective Inference in High-dimensional Problems: Prediction and Feature Selection. arXiv:1810.02406
- R-package projpred in CRAN and github https://github.com/stan-dev/projpred (easy to use, e.g. with RStan, RStanARM, brms)

\section*{References}

References and more at avehtari.github.io/masterclass/ and avehtari.github.io/modelselection//
- Model selection tutorial at StanCon 2018 Asilomar
- more about projection predictive variable selection
- Regularized horseshoe talk at StanCon 2018 Asilomar
- Several case studies
- References with links to open access pdfs```

