REGULARIZED HORSESHOE

Aki Vehtari

Aalto University, Finland aki.vehtari@aalto.fi @avehtari

Joint work with Juho Piironen

- Large p, small n regression
- Prior on weights vs. prior on shrinkage
- Horseshoe prior
- Regularized horseshoe prior

Linear or generalized linear regression

- number of covariates p
- number of observations n
- Large *p*, small *n* common e.g.
 - in modern medical/bioinformatics studies (e.g. microarrays, GWAS)
 - brain imaging
 - in our examples *p* is around 1e2–1e5, and usually *n* < 100

 If noiseless observations we can fit uniquely identified regression in n – 1 dimensions

- If noiseless observations we can fit uniquely identified regression in *n* − 1 dimensions
- If noisy observations, more complicated

- If noiseless observations we can fit uniquely identified regression in *n* − 1 dimensions
- If noisy observations, more complicated
- If correlating covariates, more complicated

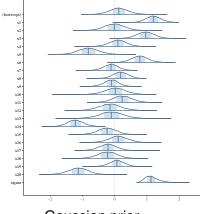
Priors!

- Non-sparse priors assume most covariates are relevant, but may have strong correlations
 - \rightarrow factor models

Priors!

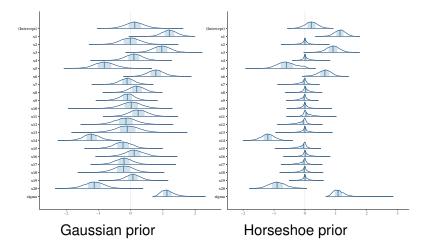
- Non-sparse priors assume most covariates are relevant, but may have strong correlations
 - \rightarrow factor models
- Sparse priors assume only small number of covariates effectively non-zero $m_{\rm eff} \ll n$

Example



Gaussian prior

Example

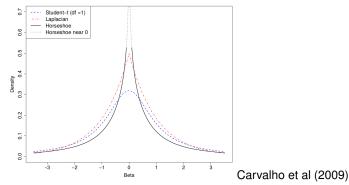


rstanarm + bayesplot

 Gaussian vs. Horseshoe predictive performance using cross-validation (loo package, more in Friday Model selection tutorial)

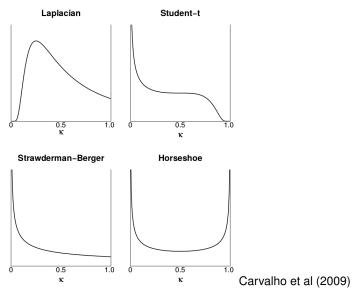
Large p, small n regression

- Sparse priors assume only small number of covariates effectively non-zero $m_{\rm eff} \ll p$
 - Laplace prior ("Bayesian lasso")
 - computationally convenient (continuous and log-concave), but not really sparse
 - spike-and-slab (with point-mass at zero)
 - prior on number of non-zero covariates, discrete
 - Horseshoe and hierarchical shrinkage priors
 - prior on amount of shrinkage, continuous



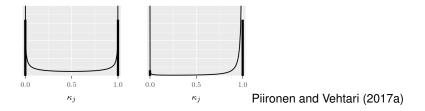
Prior on shrinkage

 Slope of the prior at specific value determines the amount of shrinkage



Spike-and-slab vs horseshoe prior

- Spike and slab prior (with point-mass at zero) has mix of continuous prior and probability mass at zero
 - parameter space is mixture of continuous and discrete
- Hierarchical shrinkage and horseshoe priors are continuous



• Linear regression model with covariates $\mathbf{x} = (x_1, \dots, x_D)$

$$\mathbf{y}_i = \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{N}(\mathbf{0}, \sigma^2), \quad i = 1, \dots, n,$$

• Linear regression model with covariates $\mathbf{x} = (x_1, \dots, x_D)$

$$\mathbf{y}_i = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{N}(\mathbf{0}, \sigma^2), \quad i = 1, \dots, n,$$

• The horseshoe prior:

$$egin{aligned} eta_j \, | \, \lambda_j, au &\sim \mathrm{N} \Big(\mathbf{0}, \lambda_j^2 au^2 \Big), \ \lambda_j &\sim \mathrm{C}^+(\mathbf{0}, \mathbf{1}) \,, \quad j = \mathbf{1}, \dots, D. \end{aligned}$$

• Linear regression model with covariates $\mathbf{x} = (x_1, \dots, x_D)$

$$\mathbf{y}_i = \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{N} \Big(\mathbf{0}, \sigma^2 \Big), \quad i = 1, \dots, n,$$

• The horseshoe prior:

$$egin{aligned} eta_j \, | \, \lambda_j, au &\sim \mathrm{N} \Big(\mathbf{0}, \lambda_j^2 au^2 \Big), \ \lambda_j &\sim \mathrm{C}^+(\mathbf{0}, \mathbf{1}) \,, \quad j = \mathbf{1}, \dots, D. \end{aligned}$$

- The global parameter τ shrinks all β_i towards zero
- The local parameters λ_j allow some β_j to escape the

shrinkage

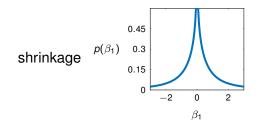
• Linear regression model with covariates $\mathbf{x} = (x_1, \dots, x_D)$

$$\mathbf{y}_i = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_i + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{N}(\mathbf{0}, \sigma^2), \quad i = 1, \dots, n,$$

The horseshoe prior:

$$egin{aligned} eta_j \, | \, \lambda_j, au &\sim \mathrm{N} \Big(\mathbf{0}, \lambda_j^2 au^2 \Big), \ \lambda_j &\sim \mathrm{C}^+(\mathbf{0}, \mathbf{1}) \,, \quad j = 1, \dots, D, \end{aligned}$$

- The global parameter τ shrinks all β_i towards zero
- The local parameters λ_i allow some β_i to escape the



 Given the hyperparameters, the posterior mean satisfies approximately

$$ar{eta}_j = (1-\kappa_j)eta_j^{\mathsf{ML}}, \qquad \kappa_j = rac{1}{1+n\sigma^{-2}\tau^2\lambda_j^2},$$

where κ_i is the *shrinkage factor*

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 1.0$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.9$$

- relevant ($\bar{\beta}_j \approx \beta_i^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.8$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.7$$

- relevant ($\bar{\beta}_j \approx \beta_i^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.6$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.5$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.4$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.3$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.2$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.1$$

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_j \sim C^+(0, 1)$, the prior for κ_j looks like:

$$n\sigma^{-2}\tau^{2} = 0.1$$

We expect both

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

Small $\tau \Rightarrow$ more coefficients \approx 0

 Given the hyperparameters, the posterior mean satisfies approximately

$$\bar{\beta}_j = (1 - \kappa_j) \beta_j^{\text{ML}}, \qquad \kappa_j = \frac{1}{1 + n \sigma^{-2} \tau^2 \lambda_j^2},$$

where κ_i is the *shrinkage factor*

• With $\lambda_i \sim C^+(0, 1)$, the prior for κ_i looks like:

$$n\sigma^{-2}\tau^{2} = 0.1$$

We expect both

- relevant ($\bar{\beta}_j \approx \beta_j^{\text{ML}}$) features
- irrelevant ($\bar{\beta}_j \approx 0$) features

Small $\tau \Rightarrow$ more coefficients \approx 0 How to specify prior for τ ?

The global shrinkage parameter τ

Effective number of nonzero coefficients

$$m_{
m eff} = \sum_{j=1}^{D} (1-\kappa_j)$$

The global shrinkage parameter τ

Effective number of nonzero coefficients

$$m_{
m eff} = \sum_{j=1}^{D} (1 - \kappa_j)$$

• The prior mean can be shown to be

$$\mathbf{E}[m_{\mathsf{eff}} \,|\, \tau, \sigma] = \frac{\tau \sigma^{-1} \sqrt{n}}{1 + \tau \sigma^{-1} \sqrt{n}} \, D$$

The global shrinkage parameter au

Effective number of nonzero coefficients

$$m_{ ext{eff}} = \sum_{j=1}^{D} (1 - \kappa_j)$$

• The prior mean can be shown to be

$$\mathbf{E}[\boldsymbol{m}_{\mathsf{eff}} \,|\, \tau, \sigma] = \frac{\tau \sigma^{-1} \sqrt{n}}{1 + \tau \sigma^{-1} \sqrt{n}} \, \boldsymbol{D}$$

Setting E[m_{eff} | τ, σ] = p₀ (prior guess for the number of nonzero coefficients) yields for τ

$$\tau_0 = \frac{\rho_0}{D - \rho_0} \frac{\sigma}{\sqrt{n}}$$

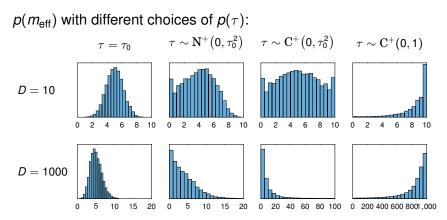
 \Rightarrow Prior guess for τ based on our beliefs about the sparsity

Illustration $p(\tau)$ vs. $p(m_{\text{eff}})$

Let n = 100, $\sigma = 1$, $p_0 = 5$, $\tau_0 = \frac{p_0}{D - \rho_0} \frac{\sigma}{\sqrt{n}}$, D = dimensionality

Illustration $p(\tau)$ vs. $\overline{p(m_{\text{eff}})}$

Let n = 100, $\sigma = 1$, $p_0 = 5$, $\tau_0 = \frac{p_0}{D - p_0} \frac{\sigma}{\sqrt{n}}$, D = dimensionality



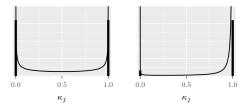
• The reference value:

$$\tau_0 = \frac{p_0}{D - p_0} \frac{\sigma}{\sqrt{n}}$$

- The framework can be applied also to non-Gaussian observation models by deriving appropriate plug-in values for σ
 - Gaussian approximation to the likelihood
 - E.g. $\sigma = 2$ for logistic regression

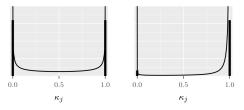
Regularized horseshoe

- HS allows some coefficients to be completely unregularized
 - allows complete separation in logistic model with $n \ll p$

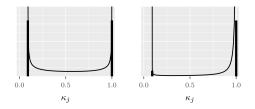


Regularized horseshoe

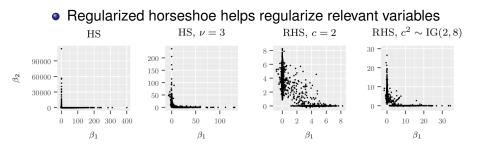
- HS allows some coefficients to be completely unregularized
 - allows complete separation in logistic model with $n \ll p$



- Regularized horseshoe adds additional wide slab
 - maintains division to relevant and non-relevant variables



Horseshoe vs regularized horseshoe



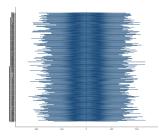
- Easy in rstanarm (thanks to Ben Goodrich) p0 <- 5 tau0 <- p0/(D-p0) * sigmaguess/sqrt(n) fit <- stan_glm(y ~ x, gaussian(), hs(global_scale=tau0, slab_scale=2.5, slab_df=4))
- Note: rstanarm does not condition on *σ*, and thus need to scale tau0 with a guess of expected value of *σ*
 - luckily the result is not sensitive to the exact value

```
    Easy in rstanarm (thanks to Ben Goodrich)
p0 <- 5
tau0 <- p0/(D-p0) * sigmaguess/sqrt(n)
fit <- stan_glm(y ~ x, gaussian(), hs(global_scale=tau0, slab_scale=2.5,
slab_df=4))
```

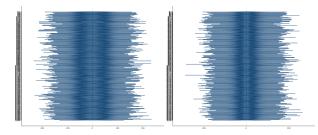
- Note: rstanarm does not condition on *σ*, and thus need to scale tau0 with a guess of expected value of *σ*
 - luckily the result is not sensitive to the exact value
- Note 2: hs() prior is called "hierarchical shrinkage" prior, as it is extension of Horseshoe (Horseshoe has local_df=1)
 - luckily the result is not sensitive to the exact value

- Simulated regression example
 - $n = 100, \, p = 200, \, true \, p_0 = 7$
- Gaussian vs. "Bayesian LASSO" vs. Reg. Horseshoe

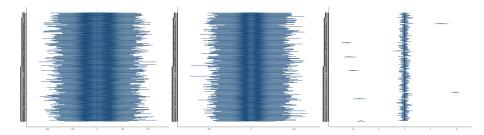
- Simulated regression example
 - $n = 100, p = 200, true p_0 = 7$
- Gaussian vs. "Bayesian LASSO" vs. Reg. Horseshoe



- Simulated regression example
 - $n = 100, p = 200, true p_0 = 7$
- Gaussian vs. "Bayesian LASSO" vs. Reg. Horseshoe



- Simulated regression example
 - $n = 100, \, p = 200, \, true \, p_0 = 7$
- Gaussian vs. "Bayesian LASSO" vs. Reg. Horseshoe



Simulated regression example
 n = 100, p = 200, true p₀ = 7

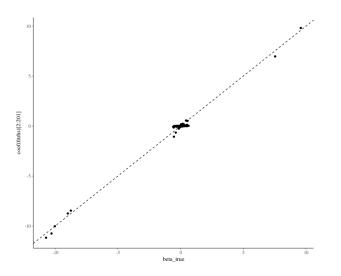
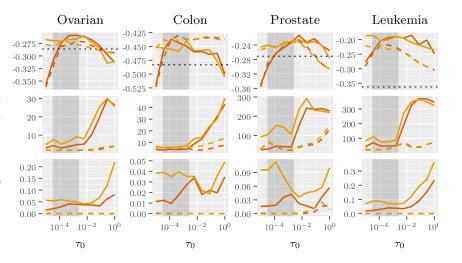


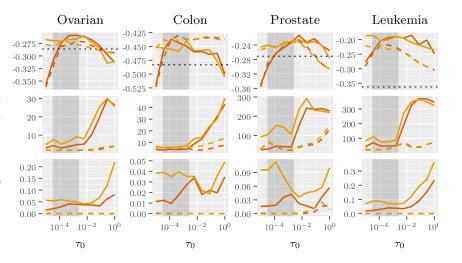
Table: Summary of the real world datasets, *D* denotes the number of predictors and *n* the dataset size.

Dataset	Туре	D	п
Ovarian	Classification	1536	54
Colon	Classification	2000	62
Prostate	Classification	5966	102
ALLAML	Classification	7129	72

Horseshoe vs regularized horseshoe

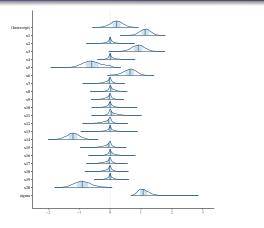


Horseshoe vs regularized horseshoe



 Regularized horseshoe helps to reduce the number of divergences, too

Example



- Even if Horseshoe shrinks a lot, coefficient posterior has unecrtainty and it's not exactly zero
- Tomorrow in Model selection tutorial
 - how to select most relevant variables
 - how to do the inference after the selection while taking into account the uncertainties in the full model

Summary of regularized horseshoe prior

- Sparse as horseshoe, but more robust inference and computation
- Better performance than LASSO and Bayesian LASSO

References (with code examples for Stan included)

- Juho Piironen and Aki Vehtari (2017). Sparsity information and regularization in the horseshoe and other shrinkage priors. In Electronic Journal of Statistics, 11(2):5018-5051. https://projecteuclid.org/euclid.ejs/1513306866
- Juho Piironen and Aki Vehtari (2017). On the hyperprior choice for the global shrinkage parameter in the horseshoe prior. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, PMLR 54:905-913. http://proceedings.mlr.press/v54/piironen17a.html
- Juho Piironen, and Aki Vehtari (2018). Iterative supervised principal components. Proceedings of the 21th International Conference on Artificial Intelligence and Statistics, accepted for publication. https://arxiv.org/abs/1710.06229
- See also model selection tutorial with some notebooks using regularized horseshoe https://github.com/avehtari/modelselection_tutorial