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Outline

Large p, small n regression
Prior on weights vs. prior on shrinkage
Horseshoe prior
Regularized horseshoe prior
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Large p, small n regression

Linear or generalized linear regression
number of covariates p
number of observations n

Large p, small n common e.g.
in modern medical/bioinformatics studies (e.g. microarrays,
GWAS)
brain imaging
in our examples p is around 1e2–1e5, and usually n < 100
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Large p, small n regression

If noiseless observations we can fit uniquely identified
regression in n − 1 dimensions

If noisy observations, more complicated
If correlating covariates, more complicated
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Large p, small n regression

Priors!

Non-sparse priors assume most covariates are relevant, but
may have strong correlations
→ factor models

Sparse priors assume only small number of covariates
effectively non-zero meff � n
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Example

Gaussian vs. Horseshoe predictive performance using
cross-validation (loo package, more in Friday Model selection
tutorial)

> compare ( loog , loohs )
e l p d _ d i f f se

7.9 2.8
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Large p, small n regression

Sparse priors assume only small number of covariates
effectively non-zero meff � p

Laplace prior (“Bayesian lasso”)
computationally convenient (continuous and log-concave), but
not really sparse

spike-and-slab (with point-mass at zero)
prior on number of non-zero covariates, discrete

Horseshoe and hierarchical shrinkage priors
prior on amount of shrinkage, continuous

Carvalho et al (2009)
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Prior on shrinkage

Slope of the prior at specific value determines the amount of
shrinkage

Carvalho et al (2009) 9 / 24



Spike-and-slab vs horseshoe prior

Spike and slab prior (with point-mass at zero) has mix of
continuous prior and probability mass at zero

parameter space is mixture of continuous and discrete

Hierarchical shrinkage and horseshoe priors are continuous

Piironen and Vehtari (2017a)
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Horseshoe prior

Linear regression model with covariates x = (x1, . . . , xD)

yi = βTxi + εi , εi ∼ N
(

0, σ2
)
, i = 1, . . . ,n ,

The horseshoe prior:

βj |λj , τ ∼ N
(

0, λ2
j τ

2
)
,

λj ∼ C+(0,1) , j = 1, . . . ,D.

The global parameter τ shrinks all βj towards zero
The local parameters λj allow some βj to escape the

shrinkage
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Horseshoe prior

Given the hyperparameters, the posterior mean satisfies
approximately

β̄j = (1− κj)β
ML
j , κj =

1
1 + nσ−2τ2λ2

j
,

where κj is the shrinkage factor

With λj ∼ C+(0,1), the prior for κj looks like:

We expect both

relevant (β̄j ≈ βML
j ) features

irrelevant (β̄j ≈ 0) features

Small τ ⇒ more coefficients ≈ 0
How to specify prior for τ?
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The global shrinkage parameter τ

Effective number of nonzero coefficients

meff =
D∑

j=1

(1− κj)

The prior mean can be shown to be

E[meff | τ, σ] =
τσ−1√n

1 + τσ−1
√

n
D

Setting E[meff | τ, σ] = p0 (prior guess for the number of
nonzero coefficients) yields for τ

τ0 =
p0

D − p0

σ√
n

⇒ Prior guess for τ based on our beliefs about the sparsity
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Illustration p(τ) vs. p(meff)

Let n = 100, σ = 1, p0 = 5, τ0 = p0
D−p0

σ√
n , D =

dimensionality

p(meff) with different choices of p(τ):
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Non-Gaussian observation models

The reference value:

τ0 =
p0

D − p0

σ√
n

The framework can be applied also to non-Gaussian
observation models by deriving appropriate plug-in values
for σ

Gaussian approximation to the likelihood
E.g. σ = 2 for logistic regression
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Regularized horseshoe

HS allows some coefficients to be completely unregularized
allows complete separation in logistic model with n� p

Regularized horseshoe adds additional wide slab
maintains division to relevant and non-relevant variables
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Horseshoe vs regularized horseshoe

Regularized horseshoe helps regularize relevant variables
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Regularized horseshoe in rstanarm

Easy in rstanarm (thanks to Ben Goodrich)
p0 <- 5
tau0 <- p0/(D-p0) * sigmaguess/sqrt(n)

fit <- stan_glm(y ∼ x, gaussian(), hs(global_scale=tau0, slab_scale=2.5,

slab_df=4))

Note: rstanarm does not condition on σ, and thus need to
scale tau0 with a guess of expected value of σ

luckily the result is not sensitive to the exact value

Note 2: hs() prior is called “hierarchical shrinkage” prior, as
it is extension of Horseshoe (Horseshoe has local_df=1)

luckily the result is not sensitive to the exact value
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Regularized horseshoe in rstanarm

Simulated regression example
n = 100, p = 200, true p0 = 7
Gaussian vs. “Bayesian LASSO” vs. Reg. Horseshoe
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Experiments

Table: Summary of the real world datasets, D denotes the
number of predictors and n the dataset size.

Dataset Type D n

Ovarian Classification 1536 54
Colon Classification 2000 62
Prostate Classification 5966 102
ALLAML Classification 7129 72
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Horseshoe vs regularized horseshoe

Regularized horseshoe helps to reduce the number of
divergences, too
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Example
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Even if Horseshoe shrinks a lot, coefficient posterior has
unecrtainty and it’s not exactly zero
Tomorrow in Model selection tutorial

how to select most relevant variables
how to do the inference after the selection while taking into
account the uncertainties in the full model
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Summary of regularized horseshoe prior

Sparse as horseshoe, but more robust inference and
computation
Better performance than LASSO and Bayesian LASSO

References (with code examples for Stan included)

Juho Piironen and Aki Vehtari (2017). Sparsity information and
regularization in the horseshoe and other shrinkage priors. In Electronic
Journal of Statistics, 11(2):5018-5051.
https://projecteuclid.org/euclid.ejs/1513306866
Juho Piironen and Aki Vehtari (2017). On the hyperprior choice for the
global shrinkage parameter in the horseshoe prior. Proceedings of the
20th International Conference on Artificial Intelligence and Statistics,
PMLR 54:905-913. http://proceedings.mlr.press/v54/piironen17a.html
Juho Piironen, and Aki Vehtari (2018). Iterative supervised principal
components. Proceedings of the 21th International Conference on
Artificial Intelligence and Statistics, accepted for publication.
https://arxiv.org/abs/1710.06229
See also model selection tutorial with some notebooks using regularized
horseshoe https://github.com/avehtari/modelselection_tutorial
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