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LOO vs. WAIC

LOO and WAIC estimate the same predictive performance
citerion and are asymptotically equal

some of the discussion holds for WAIC, too
WAIC doesn’t have as good diagnostics and fails earlier
than PSIS-LOO used in loo package.

See more in
Decision theoretic review and more methods in Vehtari, A., and Ojanen, J.
(2012). A survey of Bayesian predictive methods for model assessment,
selection and comparison. Statistics Surveys 6, 142–228.
Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive
information criteria for Bayesian models. Statistics and Computing,
24(6):997–1016. Preprint http://www.stat.columbia.edu/∼gelman/research/
published/waic understand3.pdf
Vehtari, A., Gelman, A., and Gabry, J. (2016). Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC. Statistics and
Computing, 27(5):1413–1432. arXiv preprint arXiv:1507.04544.
http://arxiv.org/abs/1507.04544
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Predictive performance

Ideal predictive performance with log score

elpd =

∫
pt (ỹ) log p(ỹ |D,Mk )dỹ ,

where pt (ỹ) is unknown true future distribution
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M-open,-closed,-completed

Following Bernardo & Smith (1994), there are three
different approaches for dealing with the unknown pt

M-open
M-closed
M-completed
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M-open

Explicit specification of pt (ỹ) in∫
pt (ỹ) log p(ỹ |D,Mk )dỹ ,

is avoided by re-using the observed data D as a pseudo
Monte Carlo samples from the distribution of future data
Bayesian leave-one-out cross-validation

êlpdLOO =
1
n

n∑
i=1

log p(yi |xi ,D−i ,Mk )

almost unbiased estimate for a single model

6 / 44



Cross-validation

Naı̈ve computation requires computation of n posteriors
Less computation with

analytic solutions and approximations available for some
models
importance sampling using the full posterior as the
proposal (easy to use with Stan)
K -fold cross-validation

most robust
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Leave-one-out cross-validation

Special case is if we leave only one data point out
(LOO-CV)
LOO predictive density evaluated at yi

p(yi |xi ,D−i) =

∫
p(yi |xi , θ)p(θ|D−i)dθ,

where D−i is all the data except (yi , xi)

leave-one-out posterior p(θ|D−i ) is close to full posterior
p(θ|D), but we still avoid the double use of data
naı̈ve implementation requires to do the posterior inference
n times
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Importance sampling

Having samples θs from p(θs|D)

p(ỹi |xi ,D−i) ≈
∑S

s=1 p(ỹi |θs)ws
i∑S

s=1 ws
i

,

where ws
i are importance weights and

ws
i =

p(θs|xi ,D−i)

p(θs|D)
∝ 1

p(yi |θs)
.
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...
model {

vector[N] eta;
eta <- beta0 + z*beta;
beta ˜ normal(0, phi);
phi ˜ double_exponential(0, 10);
y ˜ bernoulli_logit(eta);

}
generated quantities {

vector[N] log_lik;
vector[N] eta;
eta <- beta0 + z*beta;
for (n in 1:N)

log_lik[n] <- bernoulli_logit_lpdf(y[n],eta[n]);
}
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Pareto smoothed importance sampling

p(ỹi |xi ,D−i) ≈
∑S

s=1 p(ỹi |θs)ws
i∑S

s=1 ws
i

The variance of the importance weights in IS-LOO can be
large or even infinite
By fitting a generalized Pareto distribution to the tail of the
weight distribution

obtain an estimate of the shape parameter k
if k < 1

2 variance is finite, the central limit theorem holds
if 1

2 ≤ k < 1 variance is infinite but mean exists, the
generalized central limit theorem holds
if k ≥ 1 variance and mean do not exist, the truncated
estimate will have a finite variance but considerable bias
variance of the IS estimate can be reduced by Pareto
smoothing the weights→ PSIS-LOO
for k < 0.7 finite sample convergence rates practical
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PSIS-LOO

loo package in CRAN implements PSIS-LOO
loo 2.0 is using new version of Pareto smoothing

rstanarm has integrated support
References

Vehtari, A., Gelman, A., Gabry, J. (2017). Practical
Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and Computing.
27(5):1413–1432. arXiv preprint
http://arxiv.org/abs/1507.04544.
Vehtari, A., Gelman, A., Gabry, J. (2017). Pareto smoothed
importance sampling. arXiv preprint
http://arxiv.org/abs/1507.02646.
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Model comparison with LOO

Pairwise comparison of individual elpd’s

êlpddiff =
1
n

n∑
i=1

[
êlpdLOO,i,M2

− êlpdLOO,i,M1

]
Compute also se for accuracy of the comparison
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Example where cross-validation is not needed

Simple model: we can look at the posterior directly
treatment effect of beta-blockers on mortality –
betablockers.Rmd
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M-completed

Ideal predictive performance with log score

elpd =

∫
pt (ỹ) log p(ỹ |D,Mk )dỹ ,

Reference predictive approach

êlpdref =

∫
p(ỹ |D,M∗) log p(ỹ |D,Mk )dỹ ,

where M∗ is a reference model we trust
using a model decreases variance, but may introduce bias
smaller error more useful than unbiasednes, but need to be
careful as bias can be very large
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Examples where cross-validation is useful

We don’t trust the model: possible model misspecification
treatment effect on number of roaches – roaches.Rmd

Complex model with posterior dependencies: difficult to
analyse posterior

colinearity in covariates – colinear.Rmd
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On Accuracy of cross-validation

se for elpd loo is slightly underestimated and the
distribution is often highly skewed
se for elpd diff is also underestimated and true distribution
might be skewed
If using elpd diff and se to compute the probability that one
model is better than other (Φ(0|elpd diff, se)), these
probabilities are not calibrated

be cautious when interpreting or reporting these

We know how to slightly improve the calibration, and we’ll
report results on the effects of miscalibration later this year
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PSIS-LOO+

Compute leave-one-out posterior exactly for those
observations for which k̂ > 0.7

For rstanarm models: loo(rstanarmfit, k threshold=0.7)
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K -fold-CV

Instead of leaving one observation out, leave a block of
observations
When data is divided in K blocks the approach is called
K -fold-CV
If, for example, K = 10, then 90% of data is used to form
the posterior, which often produces similar posterior as full
data
k -fold-CV should be used

if PSIS-LOO diagnostics indicate problems with importance
sampling and PSIS-LOO+ would compute many more than
K posteriors
For rstanarm models: kfold(rstanarmfit, K = 10)
if the prediction task is for groups
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Hierarchical models

τ

}} �� ((
θ1

��

θ2

��

· · · θJ

��
yi1 yi2 · · · yiJ

1) Predicting new yij given an existing group j ∈ (1, . . . , J)

LOO or randomized/stratified K -fold-CV
2) Predicting new yij given a new group j = J + 1

grouped K-fold-CV
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Leave-one-group-out cross-validation

Importance sampling is less likely to work, as a group of
observations is likely to be more influential than just one
(and thus full posterior and loo posterior can be doo
different)

Marginalization in style of Rabe-Hesketh and Furr (Invited
talk Wednesday morning) can be used (currently with
qudrature implemented in additional software)
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Hierarchical models

Hierarchical model for polling results in different states
Predicting new yij given an existing group j ∈ (1, . . . , J)
Wang, W., and Gelman, A. (2014). Difficulty of selecting
among multilevel models using predictive accuracy,
Statistics and Its Inference, 7:1.
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Cross-validation for hierarchical models

rstanarm support for leave-one-out-group cross-validation
in progress
Hierarchical model comparison examples in progress
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Selection induced bias

Selection induced bias in LOO-CV
same data is used to assess the performance and make
the selection
the selected model fits more to the data
the LOO-CV estimate for the selected model is biased
recognised already, e.g., by Stone (1974)

Performance of the selection process itself can be
assessed using two level cross-validation, but it does not
help choosing better models
Bigger problem if there is a large number of models as in
covariate selection
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Selection induced bias in variable selection
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Selection induced bias in variable selection
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Selection induced bias in variable selection
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Selection induced bias in variable selection
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Projection predictive method, general idea

Originally proposed for generalized linear models by
Goutis and Robert (1998), Dupuis and Robert (2003)
(the decision theoretic idea of using the full model can be
tracked to Lindley (1968), see also many related
references in Vehtari and Ojanen (2012))
Performs well in practice in comparison to many other
methods (Piironen and Vehtari 2016)

has low variance
able to preserve information from the full model

General idea
Fit the full encompassing model (with all the inputs) with
best possible prior information
Any submodel (reduced number of inputs) is trained by
minimizing predictive Kullback-Leibler (KL) divergence to
the full model (= projection)

For a given number of variables, choose the model with
minimal projection discrepancy
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Projective predictive covariate selection, idea

The full model predictive distribution represents our best
knowledge about future ỹ

p(ỹ |D) =

∫
p(ỹ |θ)p(θ|D)dθ,

where θ = (β, σ2)) and β is in general non-sparse (all
βj 6= 0)

What is the best distribution q⊥(θ) given a constraint that
only selected covariates have nonzero coefficient
Optimization problem:

q⊥ = arg min
q

1
n

n∑
i=1

KL
(

p(ỹi | D) ‖
∫

p(ỹi | θ)q(θ)dθ
)

Optimal projection from the full posterior to a sparse
posterior (with minimal predictive loss)
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Projective predictive feature selection, computation

We have posterior draws {θs}Ss=1, for the full model
(θ = (β, σ2)) and β is in general non-sparse (all βj 6= 0)

The predictive distribution p(ỹ |D) ≈ 1
S
∑

s p(ỹ |θs)
represents our best knowledge about future ỹ
Easier optimization problem by changing the order of
integration and optimization (Goutis & Robert, 1998):

θs
⊥ = arg min

θ̂

1
n

n∑
i=1

KL
(

p(ỹi | θs) ‖p(ỹi | θ̂)
)

θs
⊥ are now (approximate) draws from the projected

distribution
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Projection by draws

Projection of one Monte Carlo sample can be solved
Gaussian case: analytically

w⊥ = (X⊥TX⊥)−1X⊥T f

σ2
⊥ = σ2 +

1
n

(f− f⊥)T(f− f⊥)

Exponential family case: equivalent to finding the maximum
likelihood parameters for the submodel with the
observations replaced by the fit of the reference model
(Goutis & Robert, 1998; Dupuis & Robert, 2003)
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Example
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A projected model (with
variables ordered in

relevance)

rstanarm + projpred + bayesplot
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Projection predictive variable selection

In variable selection usually not feasible to go through all
variable combinations

Use e.g. forward search to explore promising combinations

start from the empty model, at each step add the variable
that reduces the objective the most
stop when the performance similar to the full model

can use PSIS-LOO to estimate the performance and to
choose the model size
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Selection induced bias in variable selection
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Simulated example

n = 80,p = 200, only 7 features are relevant
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Lasso-path when λ is varied, optimal model size by
cross-validation (dotted) vertical axis shows the test error
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Simulated example
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Simulated example
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Example

Predicting disease risk with logistic regression –
diabetes.Rmd
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projpred

Not yet in CRAN, but hopefully this spring
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loo 2.0

Improved PSIS-LOO
Improved Pareto diagnostics and smoothing
Effective sample size and se estimates
Vehtari, A., Gelman, A., Gabry, J. (2017). Pareto smoothed
importance sampling. arXiv preprint
http://arxiv.org/abs/1507.02646

Model averaging
Pseudo-BMA+ weights
Stacking weights
Yao, Y., Vehtari, A., Simpson, D. and Gelman, A.: 2017,
Using stacking to average Bayesian predictive distributions,
Bayesian analysis. Online
https://projecteuclid.org/euclid.ba/1516093227, arXiv
preprint https://arxiv.org/abs/1710.06229

Helper functions for K -fold-CV
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