Model assessment and selection

Aki Vehtari, Aalto University

Predicting concrete quality

Predicting cancer recurrence

GIST Risk calculator
Tumor size (cm)
Mitotic count (per 50 HPFs*)

Tumor site
Tumor rupture

Made by

Online platform for the future of data-driven and personalized cancer care

Reaktor

loo package

Computed from 4000 by 20 log-likelihood matrix
Estimate SE

elpd_loo	-29.5	3.3
p_loo	2.7	1.0
looic	58.9	6.7

Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:

$(-\operatorname{Inf}, 0.5]$	(good)	18	90.0%	899
$(0.5,0.7]$	(ok)	2	10.0%	459
$(0.7,1]$	(bad)	0	0.0%	<NA>
$(1$, Inf)	(very bad)	0	0.0%	<NA>

All Pareto k estimates are ok ($k<0.7$).
See help('pareto-k-diagnostic') for details.
Model comparison:
(negative 'elpd_diff' favors 1st model, positive favors 2nd)
$\begin{array}{rr}\text { elpd_diff } & \text { se } \\ -0.2 & 0.1\end{array}$

Outline

- What is cross-validation
- Leave-one-out cross-validation (elpd_loo, p_loo)
- Uncertainty in LOO (SE)
- When is cross-validation applicable?
- data generating mechanisms and prediction tasks
- leave-many-out cross-validation
- Fast cross-validation
- PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
- K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging (stacking, loo weights)

True mean and sigma

Posterior mean

Posterior mean, alternative data realisation

Posterior mean

Posterior draws

Posterior predictive distribution

Posterior predictive distribution

$$
p(\tilde{y} \mid \tilde{x}=18, x, y)=\int p(\tilde{y} \mid \tilde{x}=18, \theta) p(\theta \mid x, y) d \theta
$$

New data

Posterior predictive distribution

Leave-one-out mean

Leave-one-out residual

Leave-one-out residual

$y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]$

Leave-one-out residual

$y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]$
Can be use to compute, e.g., RMSE, $R^{2}, 90 \%$ error

Leave-one-out residual

$y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]$
Can be use to compute, e.g., RMSE, $R^{2}, 90 \%$ error
See LOO- R^{2} at avehtari.github.io/bayes_R2/bayes_R2.html

Posterior predictive density

Posterior predictive density

$$
p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07
$$

Leave-one-out predictive density

$$
\begin{aligned}
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07 \\
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x_{-18}, y_{-18}\right) \approx 0.03
\end{aligned}
$$

Leave-one-out predictive densities

$p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right), \quad i=1, \ldots, 20$

Leave-one-out log predictive densities

$\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right), \quad i=1, \ldots, 20$

Leave-one-out log predictive densities

$\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
unbiased estimate of \log posterior pred. density for new data

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{lpd}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
lpd $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8$
p_loo $=$ lpd - elpd_loo ≈ 2.7

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$
see Vehtari, Gelman \& Gabry (2017a) and Vehtari \& Ojanen (2012) for more

Fixed / designed x

LOO is ok for fixed / designed x. SE is uncertainty about $y \mid x$.

```
see Vehtari & Ojanen (2012) and
andrewgelman.com/2018/08/03/loo-cross-validation-approaches-valid/
```


Distribution for x

LOO is ok for random x. SE is uncertainty about $y \mid x$ and x.

```
see Vehtari & Ojanen (2012) and
andrewgelman.com/2018/08/03/loo-cross-validation-approaches-valid/
```


Distribution for x

LOO is ok for random x. SE is uncertainty about $y \mid x$ and x. Covariate shift can be handled with importance weighting or modelling

loo package

Computed from 4000 by 20 log-likelihood matrix

	Estimate	SE
elpd_loo	-29.5	3.3
p_loo	2.7	1.0
looic	58.9	6.7

Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:

$(-\operatorname{Inf}, 0.5]$	(good)	18	90.0%	899
$(0.5,0.7]$	(ok)	2	10.0%	459
$(0.7,1]$	(bad)	0	0.0%	$<$ <NA $>$
$(1$, Inf $)$	(very bad)	0	0.0%	<NA>

All Pareto k estimates are ok ($k<0.7$).
See help('pareto-k-diagnostic') for details.

Nonlinear model fit

Nonlinear model fit + new data

Nonlinear model fit + new data

Extrapolation is more difficult

Can LOO or other cross-validation be used with time series?

Leave-one-out cross-validation is ok for assessing conditional model

1-step-ahead cross-validation is better for predicting future

m -step-ahead cross-validation is better for predicting further future

m-step-ahead leave-a-block-out cross-validation

Rats data

Can LOO or other cross-validation be used with hierarchical data?

Yes!

1-step-ahead?

Yes!

Leave-one-time-point-out?

Yes!

Leave-one-rat-out?

Yes!

Predict given initial weight?

Yes!

Summary of data generating mechanisms and prediction tasks

- You have to make some assumptions on data generating mechanism
- Use the knowledge prediction task if available
- Cross-validation can be used to analyse different parts, even if there is no clear prediction task
see Vehtari \& Ojanen (2012) and
andrewgelman.com/2018/08/03/loo-cross-validation-approaches-valid/

Fast cross-validation

- Pareto smoothed importance sampling LOO
- K-fold cross-validation

Posterior draws

Posterior predictive distribution

Posterior predictive distribution

PSIS-LOO weighted draws

$$
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right)
\end{aligned}
$$

PSIS-LOO weighted draws

$$
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)
\end{aligned}
$$

PSIS-LOO weighted draws

PSIS-LOO weighted predictive distribution

$$
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)
\end{aligned}
$$

PSIS-LOO weighted predictive distribution

$$
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y) \\
& r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right) \\
& p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx \sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]
\end{aligned}
$$

PSIS-LOO weighted predictive distribution

$\theta^{(s)} \sim p(\theta \mid x, y)$
$r_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \propto 1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)$
$p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx \sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]$, where $w \leftarrow \operatorname{PSIS}(r)$

400 importance weights for leave-18th-out

4000 importance weights for leave-18th-out

4000 importance weights for leave-18th-out

n_eff ≈ 459
see Vehtari, Gelman \& Gabry (2017b)

4000 importance weights for leave-18th-out

n_eff ≈ 459
Pareto $\mathrm{k} \approx 0.52$ (less than 0.7 is ok)

PSIS-LOO diagnostics

PSIS-LOO diagnostics

Pareto k diagnostic values:
Count Pct. Min. n_eff
$\begin{array}{rlrrl}(-\operatorname{Inf}, 0.5] & \text { (good) } & 18 & 90.0 \% & 899 \\ (0.5,0.7] & \text { (ok) } & 2 & 10.0 \% & 459 \\ (0.7,1] & \text { (bad) } & 0 & 0.0 \% & \text { <NA> } \\ (1, \text { Inf }) & \text { (very bad) } & 0 & 0.0 \% & \text { <NA> }\end{array}$

Aki.Vehtari@aalto.fi - @avehtari

PSIS-LOO diagnostics

Observation left out
Pareto k diagnostic values:
Count Pct. Min. n_eff
$\begin{array}{rlrrl}(-\operatorname{Inf}, 0.5] & \text { (good) } & 18 & 90.0 \% & 899 \\ (0.5,0.7] & \text { (ok) } & 2 & 10.0 \% & 459 \\ (0.7,1] & \text { (bad) } & 0 & 0.0 \% & \text { <NA> } \\ (1, \text { Inf }) & \text { (very bad) } & 0 & 0.0 \% & \text { <NA> }\end{array}$

Aki.Vehtari@aalto.fi - @avehtari

loo package

Computed from 4000 by 20 log-likelihood matrix
Estimate SE

elpd_loo	-29.5	3.3
p_loo	2.7	1.0
looic	58.9	6.7

Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:

(-Inf, 0.5]	(good)	$\begin{aligned} & \text { Count } \\ & 18 \end{aligned}$	$\begin{aligned} & \text { Pct. } \\ & 90.0 \% \end{aligned}$	$\begin{aligned} & \text { Min. } \\ & 899 \end{aligned}$
(0.5, 0.7]	(ok)	2	10.0\%	459
(0.7, 1]	(bad)	0	0.0\%	<NA>
(1, Inf)	(very bad)	0	0.0\%	<NA>

All Pareto k estimates are ok ($k<0.7$).
See help('pareto-k-diagnostic') for details.

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- PSIS-LOO for time series
- m-step-ahead works
mc-stan.org/loo/articles/m-step-ahead-predictions.html

Data

AR-2 prediction with 95% interval

PSIS-1-step-ahead

PSIS-1-step-ahead with refits

mc-stan.org/loo/articles/m-step-ahead-predictions.html
Aki.Vehtari@aalto.fi - @avehtari

K-fold cross-validation

- K-fold cross-validation can approximate LOO
- all uses for LOO
- K-fold cross-validation can be used for hierarchical models
- good for leave-one-group-out
- K-fold cross-validation can be used for time series
- with leave-block-out

Balance k-fold approximation of LOO

Balance k-fold approximation of LOO

Random k-fold approximation of LOO

Random kfold approximation of LOO

Aki.Vehtari@aalto.fi - @avehtari

kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

WAIC vs PSIS-LOO

WAIC vs PSIS-LOO

- WAIC has same assumptions as LOO

WAIC vs PSIS-LOO

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate

WAIC vs PSIS-LOO

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics

WAIC vs PSIS-LOO

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K -fold-CV is needed instead

WAIC vs PSIS-LOO

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead
- Multiplying by -2 doesn't give any benefit (Watanabe didn't multiply by -2)
- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is an approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

Marginal likelihood / Bayes factor

- Like 1-step-ahead but starting with 0 observations

Marginal likelihood / Bayes factor

- Like 1-step-ahead but starting with 0 observations

Marginal likelihood / Bayes factor

- Like 1-step-ahead but starting with 0 observations which makes it very sensitive to prior

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
- e.g. 90\% absolute error
- Also useful in model checking in similar way as posterior predictive checking (PPC)
see demos avehtari.github.io/modelselection/

Sometimes cross-validation is not needed

Sometimes cross-validation is not needed

Predicting the yields of mesquite bushes.
Gelman, Hill \& Vehtari: Regression and Other Stories, Chapter 11.

Model comparison

- Instead of model comparison in nested case, often easier and more accurate to analyse posterior distribution of more complex model directly

avehtari.github.io/modelselection/betablockers.html

Model comparison

- "A popular hypothesis has it that primates with larger brains produce more energetic milk, so that brains can grow quickly" (from Statistical Rethinking)
- Model 1: formula = kcal.per.g ~ neocortex
- Model 2: formula = kcal.per.g \sim neocortex + log(mass)

Pointwise comparison LOO models: Model 1

Pointwise comparison LOO models: Model 1

Model 1 elpd_loo ≈ 3.7, SE=1.8
Model 2 elpd_loo ≈ 8.4, SE=2.8

Pointwise comparison LOO models: Model 1

Model 1 elpd_loo ≈ 3.7, $\mathrm{SE}=1.8$
Model 2 elpd_loo ≈ 8.4, SE=2.8

Pointwise comparison LOO models

Model comparison:
(negative 'elpd_diff' favors 1st model, positive favors 2nd)
$\begin{array}{rr}\text { elpd_diff } & \text { se } \\ 4.7 & 2.7\end{array}$

What if one is not clearly better than others?

What if one is not clearly better than others?

- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- see regularized horseshoe prior instead of variable selection
video, refs and demos at avehtari.github.io/modelselection/

What if one is not clearly better than others?

- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- see regularized horseshoe prior instead of variable selection
video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking?
mc-stan.org/loo/articles/loo2-example.html

What if one is not clearly better than others?

- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- see regularized horseshoe prior instead of variable selection
video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking?
mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/

What if one is not clearly better than others?

- Continuous expansion including all models?
- and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
- see regularized horseshoe prior instead of variable selection

```
video, refs and demos at avehtari.github.io/modelselection/
```

- Model averaging with BMA or Bayesian stacking?
mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/
- In a nested case choose more complex if you want to take into account all the uncertainties.
andrewgelman.com/2018/07/26/
parsimonious-principle-vs-integration-uncertainties/

When not to use cross-validation

- Do not use cross-validation to choose from a large set of models!
- selection process leads to overfitting!
- you may use projection predictive approach
- useful when correlating variables make the posterior distribution analysis difficult video, refs and demos at avehtari.github.io/modelselection/ and Piironen \& Vehtari (2017)

Bayesian stacking LOO weights

- Bayesian stacking and Pseudo-BMA+ should be used only for model averaging
- you may drop models with 0 weights
- you shouldn't choose the model with largest weight unless it's 1

Take home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

References

All references and more at avehtari.github.io/modelselection/

- Model selection tutorial at StanCon 2018 Asilomar
- more about projection predictive variable selection
- Regularized horseshoe talk at StanCon 2018 Asilomar
- Several case studies
- References with links to open access pdfs

