
Generic MCMC convergence diagnostics

Run several chains
Split-R̂ (Rhat) diagnostic comparing means and variances
of chains
Effective sample size estimate Neff for dependent draws
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Several chains
Use of several chains make convergence diagnostics easier
Start chains from different starting points – preferably
overdispersed
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Remove draws from the beginning of the chains and run
chains long enough so that it is not possible to distinguish
where each chain started and the chains are well mixed
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Several chains
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R̂: comparison of within and between variances

BDA3: R̂ aka potential scale reduction factor (PSRF)
Compare means and variances of the chains

W = within chain variance estimate
var_hat_plus = total variance estimate
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R̂

Within chains variance W

W =
1
m

m∑
j=1

s2
j , where s2

j =
1

n − 1

n∑
i=1

(ψij − ψ̄.j)2

Between chains variance B

B =
n

m − 1

m∑
j=1

(ψ̄.j−ψ̄..)2, where ψ̄.j =
1
n

n∑
i=1

ψij , ψ̄.. =
1
m

m∑
j=1

ψ̄.j

B/n is variance of the means of the chains

Estimate total variance var(ψ|y) as a weighted mean of W
and B

v̂ar+(ψ|y) =
n − 1

n
W +

1
n

B
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R̂

Estimate total variance var(ψ|y) as a weighted mean of W
and B

v̂ar+(ψ|y) =
n − 1

n
W +

1
n

B

this overestimates marginal posterior variance if the starting
points are overdispersed

Given finite n, W underestimates marginal posterior
variance

single chains have not yet visited all points in the distribution
when n→∞, E(W )→ var(ψ|y)

As v̂ar+(ψ|y) overestimates and W underestimates,
compute

R̂ =

√
v̂ar+

W
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R̂

BDA3: R̂ aka potential scale reduction factor (PSRF)
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R̂
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R̂

R̂ =

√
v̂ar+

W

Estimates how much the scale of ψ could reduce if n→∞
R → 1, when n→∞
if R is big (e.g., R > 1.01), keep sampling

If R close to 1, it is still possible that chains have not
converged

if starting points were not overdispersed
distribution far from normal (especially if infinite variance)
just by chance when n is finite
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Split-R̂

BDA3: split-R̂
Examines mixing and stationarity of chains
To examine stationarity chains are splitted to two parts

after splitting, we have m chains, each having n draws
scalar draws ψij (i = 1, . . . ,n; j = 1, . . . ,m)
compare means and variances of the split chains

Aki.Vehtari@aalto.fi – @avehtari



Time series analysis

Auto correlation function
describes the correlation given a certain lag
can be used to compare efficiency of MCMC algorithms and
parameterizations
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Auto correlation
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Time series analysis

Time series analysis can be used to estimate Monte Carlo
error in case of MCMC
For expectation θ̄

Var[θ̄] =
σ2
θ

N/τ

where τ is sum of autocorrelations
τ describes how many dependent draws correspond to one
independent sample
in BDA3 N = nm
neff = nm/τ
BDA3 focuses on neff and not the Monte Carlo error directly
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Time series analysis

Estimation of the autocorrelation using several chains

ρ̂t = 1−
W − 1

M
∑m

j=1 ρ̂t ,j

2v̂ar+

where ρ̂t ,j is autocorrelation at lag t for chain j

BDA3 has slightly different less accurate equation. The
above equation is used in Stan 2.18+
Compared to usual method which computes the
autocorrelation from a single chain, this estimate has
smaller variance
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Time series analysis

Estimation of τ

τ = 1 + 2
∞∑

t=1

ρ̂t

where ρ̂t is empirical autocorrelation
empirical autocorrelation function is noisy and thus estimate
of τ is noisy
noise is larger for longer lags (less observations)
less noisy estimate is obtained by truncating

τ ≈ 1 + 2
T∑

t=1

ρ̂t

As τ is estimated from a finite number of draws, it’s
expectation is overoptimistic

if τ > mn/20 then the estimate is unreliable
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Geyer’s adaptive window estimator

Truncation can be decided adaptively
for stationary, irreducible, recurrent Markov chain
let Γm = ρ2m + ρ2m+1, which is sum of two consequent
autocorrelations
Γm is positive, decreasing and convex function of m

Initial positive sequence estimator (Geyer’s IPSE)
Choose the largest m so, that all values of the sequence
Γ̂1, . . . , Γ̂m are positive
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Effective sample size
Effective number of draws neff ≈ N/τ
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Effective sample size
Effective number of draws neff ≈ N/τ
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Dynamic HMC
Effective number of draws neff ≈ N/τ
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Problematic distributions

Nonlinear dependencies
optimal proposal depends on location

Funnels
optimal proposal depends on location

Multimodal
difficult to move from one mode to another

Long-tailed with non-finite variance and mean
central limit theorem for expectations does not hold
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Further diagnostics

Dynamic HMC/NUTS has additional diagnostics
divergences
tree depth exceedences
fraction of missing information

Aki.Vehtari@aalto.fi – @avehtari


