Effect of priors in logistic regression. See Chapter 13 in Regression and Other Stories.


Load packages

library("arm")
library("rstanarm")

Define a function running glm and stan_glm with simulated data

Arguments are the number of simulated observations, and prior parameters a and

bayes_sim <- function(n, a=-2, b=0.8){
  x <- runif(n, -1, 1)
  z <- rlogis(n, a + b*x, 1)
  y <- ifelse(z>0, 1, 0)
  fake <- data.frame(x, y)
  glm_fit <- glm(y ~ x, family = binomial(link = "logit"), data = fake)
  stan_fit <- stan_glm(y ~ x, family = binomial(link = "logit"),
     prior=normal(0.5, 0.5, autoscale=FALSE), data = fake)
  display(glm_fit, digits=1)
  print(stan_fit, digits=1)
}

Fit models to an increasing number of observations

set.seed(363852)
bayes_sim(10)

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 2.1e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.054926 seconds (Warm-up)
Chain 1:                0.056675 seconds (Sampling)
Chain 1:                0.111601 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 1.4e-05 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.047968 seconds (Warm-up)
Chain 2:                0.060642 seconds (Sampling)
Chain 2:                0.10861 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 1.4e-05 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.051281 seconds (Warm-up)
Chain 3:                0.055714 seconds (Sampling)
Chain 3:                0.106995 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 1.3e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.048756 seconds (Warm-up)
Chain 4:                0.057947 seconds (Sampling)
Chain 4:                0.106703 seconds (Total)
Chain 4: 
glm(formula = y ~ x, family = binomial(link = "logit"), data = fake)
            coef.est coef.se
(Intercept) -1.9      1.2   
x            1.5      1.7   
---
  n = 10, k = 2
  residual deviance = 8.9, null deviance = 10.0 (difference = 1.1)
stan_glm
 family:       binomial [logit]
 formula:      y ~ x
 observations: 10
 predictors:   2
------
            Median MAD_SD
(Intercept) -1.5    0.8  
x            0.6    0.5  

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
bayes_sim(100)

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 1.4e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.08405 seconds (Warm-up)
Chain 1:                0.10068 seconds (Sampling)
Chain 1:                0.18473 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 1.9e-05 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.083372 seconds (Warm-up)
Chain 2:                0.09106 seconds (Sampling)
Chain 2:                0.174432 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 1.8e-05 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.18 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.079441 seconds (Warm-up)
Chain 3:                0.093291 seconds (Sampling)
Chain 3:                0.172732 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 2.2e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.22 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.078657 seconds (Warm-up)
Chain 4:                0.0831 seconds (Sampling)
Chain 4:                0.161757 seconds (Total)
Chain 4: 
glm(formula = y ~ x, family = binomial(link = "logit"), data = fake)
            coef.est coef.se
(Intercept) -1.9      0.3   
x            1.3      0.6   
---
  n = 100, k = 2
  residual deviance = 75.8, null deviance = 81.0 (difference = 5.2)
stan_glm
 family:       binomial [logit]
 formula:      y ~ x
 observations: 100
 predictors:   2
------
            Median MAD_SD
(Intercept) -1.8    0.3  
x            0.8    0.4  

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
bayes_sim(1000)

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 7.1e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.71 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.395158 seconds (Warm-up)
Chain 1:                0.478007 seconds (Sampling)
Chain 1:                0.873165 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 7.4e-05 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.74 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.384916 seconds (Warm-up)
Chain 2:                0.473342 seconds (Sampling)
Chain 2:                0.858258 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 6.3e-05 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.63 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.42034 seconds (Warm-up)
Chain 3:                0.525527 seconds (Sampling)
Chain 3:                0.945867 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'bernoulli' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 6.7e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.67 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.42511 seconds (Warm-up)
Chain 4:                0.544931 seconds (Sampling)
Chain 4:                0.970041 seconds (Total)
Chain 4: 
glm(formula = y ~ x, family = binomial(link = "logit"), data = fake)
            coef.est coef.se
(Intercept) -2.0      0.1   
x            1.0      0.2   
---
  n = 1000, k = 2
  residual deviance = 735.5, null deviance = 769.0 (difference = 33.5)
stan_glm
 family:       binomial [logit]
 formula:      y ~ x
 observations: 1000
 predictors:   2
------
            Median MAD_SD
(Intercept) -2.0    0.1  
x            0.9    0.2  

------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
LS0tCnRpdGxlOiAiUmVncmVzc2lvbiBhbmQgT3RoZXIgU3RvcmllczogTG9naXN0aWMgcmVncmVzc2lvbiBwcmlvcnMiCmF1dGhvcjogIkFuZHJldyBHZWxtYW4sIEplbm5pZmVyIEhpbGwsIEFraSBWZWh0YXJpIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy5EYXRlKCkpYCIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0aGVtZTogcmVhZGFibGUKICAgIHRvYzogdHJ1ZQogICAgdG9jX2RlcHRoOiAyCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCkVmZmVjdCBvZiBwcmlvcnMgaW4gbG9naXN0aWMgcmVncmVzc2lvbi4gU2VlIENoYXB0ZXIgMTMgaW4KUmVncmVzc2lvbiBhbmQgT3RoZXIgU3Rvcmllcy4KCi0tLS0tLS0tLS0tLS0KCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KG1lc3NhZ2U9RkFMU0UsIGVycm9yPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBjb21tZW50PU5BKQpgYGAKCiMjIyMgTG9hZCBwYWNrYWdlcwoKYGBge3IgfQpsaWJyYXJ5KCJhcm0iKQpsaWJyYXJ5KCJyc3RhbmFybSIpCmBgYAoKIyMjIyBEZWZpbmUgYSBmdW5jdGlvbiBydW5uaW5nIGdsbSBhbmQgc3Rhbl9nbG0gd2l0aCBzaW11bGF0ZWQgZGF0YTxicj4KQXJndW1lbnRzIGFyZSB0aGUgbnVtYmVyIG9mIHNpbXVsYXRlZCBvYnNlcnZhdGlvbnMsIGFuZCBwcmlvcgpwYXJhbWV0ZXJzIGEgYW5kCgpgYGB7ciB9CmJheWVzX3NpbSA8LSBmdW5jdGlvbihuLCBhPS0yLCBiPTAuOCl7CiAgeCA8LSBydW5pZihuLCAtMSwgMSkKICB6IDwtIHJsb2dpcyhuLCBhICsgYip4LCAxKQogIHkgPC0gaWZlbHNlKHo+MCwgMSwgMCkKICBmYWtlIDwtIGRhdGEuZnJhbWUoeCwgeSkKICBnbG1fZml0IDwtIGdsbSh5IH4geCwgZmFtaWx5ID0gYmlub21pYWwobGluayA9ICJsb2dpdCIpLCBkYXRhID0gZmFrZSkKICBzdGFuX2ZpdCA8LSBzdGFuX2dsbSh5IH4geCwgZmFtaWx5ID0gYmlub21pYWwobGluayA9ICJsb2dpdCIpLAogICAgIHByaW9yPW5vcm1hbCgwLjUsIDAuNSwgYXV0b3NjYWxlPUZBTFNFKSwgZGF0YSA9IGZha2UpCiAgZGlzcGxheShnbG1fZml0LCBkaWdpdHM9MSkKICBwcmludChzdGFuX2ZpdCwgZGlnaXRzPTEpCn0KYGBgCgojIyMjIEZpdCBtb2RlbHMgdG8gYW4gaW5jcmVhc2luZyBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zCgpgYGB7ciB9CnNldC5zZWVkKDM2Mzg1MikKYmF5ZXNfc2ltKDEwKQpiYXllc19zaW0oMTAwKQpiYXllc19zaW0oMTAwMCkKYGBgCgo=