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Chapter 8: Modelling accounting for data collection

Highly recommended to read. Very informative, but also a dense
chapter.

¢ We need to model the data collection unless it is ignorable
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Highly recommended to read. Very informative, but also a dense
chapter.

¢ We need to model the data collection unless it is ignorable

* We need to know when data collection is ignorable
¢ Data collection
® Sample surveys
Designed experiments
Randomization
Observational studies
Censoring and truncation

2/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling

e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|®)
we can model just p(y|x, 6)

3/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling

e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|®)
we can model just p(y|x, 6)

e Gaussian linear model with conjugate prior

* the conditional posterior is multivariate normal
e with fixed prior on weights, the joint posterior is N-Inv-y?

3/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling
e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|¢)
we can model just p(y|x, 6)
e Gaussian linear model with conjugate prior

* the conditional posterior is multivariate normal

e with fixed prior on weights, the joint posterior is N-Inv-y?

® these properties are sometimes useful and thus good to
know, but with probabilistic programming less often needed

3/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling
e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|¢)
we can model just p(y|x, 6)
e Gaussian linear model with conjugate prior

* the conditional posterior is multivariate normal

e with fixed prior on weights, the joint posterior is N-Inv-y?

® these properties are sometimes useful and thus good to
know, but with probabilistic programming less often needed

e Bit on causal analysis (see much more in ROS Ch 18-21)

3/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling
e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|®)
we can model just p(y|x, 6)
e Gaussian linear model with conjugate prior
* the conditional posterior is multivariate normal
e with fixed prior on weights, the joint posterior is N-Inv-y?
® these properties are sometimes useful and thus good to
know, but with probabilistic programming less often needed

e Bit on causal analysis (see much more in ROS Ch 18-21)

¢ Assembling matrix of explanatory variables (see also ROS
Ch10,12)
¢ identifiability, collinearity, nonlinear relations, indicator and
categorical variables, interactions
® variable selection is not much discussed (extra lecture)

3/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling
e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|®)
we can model just p(y|x, 6)
Gaussian linear model with conjugate prior

* the conditional posterior is multivariate normal

e with fixed prior on weights, the joint posterior is N-Inv-y?

® these properties are sometimes useful and thus good to
know, but with probabilistic programming less often needed

Bit on causal analysis (see much more in ROS Ch 18-21)

Assembling matrix of explanatory variables (see also ROS
Ch10,12)
¢ identifiability, collinearity, nonlinear relations, indicator and
categorical variables, interactions
® variable selection is not much discussed (extra lecture)
Regularization (see also ROS Ch 12)
® not much discussed (see extra lectures)

3/17



Chapter 14: Introduction to regression models

¢ Justification of conditional modeling
e if joint model factorizes p(y, x|6, ¢) = p(y|x, 0)p(x|®)
we can model just p(y|x, 6)
Gaussian linear model with conjugate prior
* the conditional posterior is multivariate normal
e with fixed prior on weights, the joint posterior is N-Inv-y?
® these properties are sometimes useful and thus good to
know, but with probabilistic programming less often needed
Bit on causal analysis (see much more in ROS Ch 18-21)
Assembling matrix of explanatory variables (see also ROS
Ch10,12)
¢ identifiability, collinearity, nonlinear relations, indicator and
categorical variables, interactions
® variable selection is not much discussed (extra lecture)
Regularization (see also ROS Ch 12)
® not much discussed (see extra lectures)

Unequal variances and correlations
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e Lasso is penalized maximum likelihood linear regression,
with L1 one penalty where the amount penalty is adapted
® penalized maximum likelihood finds the mode given the
penalty parameter, and is almost the same as maximum a

posteriori

* when the amount of penalty is increased, marginal modes of
weak effects go to zero first

* when the amount of penalty is increased, also the relevant
coefficients are shrunk towards zero

® sometimes relaxed lasso is used, where after variable
selection coefficients are re-estimated

e Bayesian lasso uses Laplace distribution as prior

® Laplace prior is equivalent to L1 penalty

® but the Bayesian inference includes distribution for
parameters and that distribution doesn’t shrink to a point at
zero, even if the mode would be at zero

* empirically better results obtained with more sparse priors

* it's best to separate selection of sensible prior, good
posterior inference, and the decision analysis of which
variables are important
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Sparse priors

Laplacian Student-t
05 10 05 10
® K
Strawderman-Berger Horseshoe
05 10 05 10
3 3

from Carvalho, Polson, Scott (2009).
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Regularized horseshoe

|
0.0 0.5

1.0 0.0 0.5 1.0
Kj Kj
' [ 1
0.0 0.5 1.0 0.0 0.5 1.0
Ky Kj

® Piironen and Vehtari (2017). Sparsity information and
regularization in the horseshoe and other shrinkage priors. In
Electronic Journal of Statistics, 11(2):5018-5051. Online

® rstanarm: prior=hs ()

® brms: prior=horseshoe ()
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https://projecteuclid.org/euclid.ejs/1513306866

Projpred selection vs. Lasso

See projpred in an extra lecture

Simulated regression data
n =50, p =500, p = 150, p = 0.5

Mean squared error
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1.754

1.50

1.254

- Reference model
Lasso
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Chapter 15: Hierarchical linear models

¢ Since you know hierarchical models, theory is easy
e With probabilistic programming computation is also easy

* BDAS discusses some other computational issues
¢ section on transformations for HMC is relevant
(see also Stan user guide 21.7 Reparameterization)
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Chapter 15: Hierarchical linear models

¢ Since you know hierarchical models, theory is easy
e With probabilistic programming computation is also easy
* BDAS discusses some other computational issues
¢ section on transformations for HMC is relevant
(see also Stan user guide 21.7 Reparameterization)
¢ Fixed, random, and mixed effects models

* we don’t recommend using these terms, but they are so
popular that it's useful to know them

y ~ 1+ x fixed / population effect; pooled model
y~1+ (0+x ]| g) random / group effects
y~1+x+ (L +x | g) mixed effects; hierarchical model

* ANOVA in section 15.6 (see also stan_aov)
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Chapter 16: Generalized linear models

* Bioassay model is an example of GLM
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Chapter 16: Generalized linear models

¢ Bioassay model is an example of GLM
e Components: (see also ROS Ch 13-15)
1. The linear predictor n = X3
2. The link function g(-) and . = g~ (n)
3. Outcome distribution model with location parameter p
¢ the distribution can also depend on dispersion parameter ¢
e originally just exponential family distributions (e.g. Poisson,
binomial, negative-binomial), which all have natural
location-dispersion parameterization
e after MCMC made computation easy, GLM can refer to
models where outcome distribution is not part of exponential
family and dispersion parameter may have its own latent
linear predictor
deaths ~ dosage, family = binomial
® Hierarchical GLM natural extension
* 16.3 Weakly informative priors section is excellent although
the recommendation on using Cauchy has changed (see
https://github.com/stan-dev/stan/wiki/
Prior-Choice-Recommendations)
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Chapter 17: Models for robust inference

e For example (see also ROS Ch 15)
normal —  t-distribution
Poisson — negative-binomial
binomial — beta-binomial
probit — logistic / robit

e Computation with MCMC easy

® posterior can be multimodal
e rstanarm doesn’t have t-distribution for outcome, but brms
has
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e Useful terms
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missingness does not depend on missing values or other
observed values (including covariates)
® Missing at random (MAR)
missingness does not depend on missing values but may
depend on other observed values (including covariates)
® Missing not at random (MNAR)
missingness depends on missing values
¢ Multiple imputation
1. make a model predicting missing data
2. sample repeatedly from the missing data model to generate
multiple imputed data sets
3. make usual inference for each imputed data set
4. combine results
® mice package is ver flexible

* brms can handle some missing data
11/17



Chapter 21: Gaussian process models

e Gaussian process is
¢ infinite dimensional extension of normal distribution
e useful prior for non-linear functions
e for any finite number of variables, the marginal is multivariate
normal fi, ..., fo ~ N (u(X1,..., X2), K(X1, ..., Xn))
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e for any finite number of variables, the marginal is multivariate
normal fi, ..., fo ~ N (u(X1,..., X2), K(X1, ..., Xn))

e Often a priorip =20
e Prior for smooth non-linear functions, e.g. with

N _ 2 [x=x'[?
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Chapter 21: Gaussian process models
e (Gaussian process is

¢ infinite dimensional extension of normal distribution
¢ useful prior for non-linear functions

e for any finite number of variables, the marginal is multivariate
normal fi, ..., fo ~ N (u(X1,..., X2), K(X1, ..., Xn))

e Often a priorip =0
e Prior for smooth non-linear functions, e.g. with
k(x,x') = 12 exp (— ‘X_X/F)

2/2
=1/2, 1=2 t=1/4,1=1/2

w=1/2,1=1/2

w(x)
u(x)

e
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Chapter 21: Gaussian process models
e Gaussian process is

¢ infinite dimensional extension of normal distribution
e useful prior for non-linear functions

e for any finite number of variables, the marginal is multivariate
normal fi, ..., fo ~ N (u(X1,..., X2), K(X1, ..., Xn))

e Often a priorip =20
e Prior for smooth non-linear functions, e.g. with
n_ .2 |x—x|?
k(x,x") = 1%exp (— )

22
=1/2, 1=2 t=1/4,1=1/2

w=1/2,1=1/2
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Chapter 21: Gaussian process models

¢ Conditional on covariance function parameter the posterior
is just multivariate normal
® need to make inference for covariance function parameters

given the marginal likelihood
® the exact computation of the marginal likelihood scales

O(N?®)

13/17



Easy to make additive models
Vi(t) = f (1) + (1) + (1) + fa(t) + (1) + &
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Chapter 21: Gaussian process models

Expected lifetime (days)

Expected lifetime (days)

e For non-Gaussian outcome models similar extension as

GLMs

1000

300

100

30

10 30 50 70 90
Age (years)

1000 = =Female

300

100

30

-4 0 4 8
Townsend deprivation index (TDI)

Expected lifetime (days)

Expected lifetime (days)

¢ Survival model example:
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30

1000
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= = Female
— Male

0 1 3
WEC (Iog, ,(50x10°/L))

= = Female and TDI = -1
= Female and TDI = 6
e T~

3

0 1
WEC (log, (50x10°/L))
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GPs in Stan

e GP specific software (e.g. GPy, GPflow, GPyTorch) scale
computationally better for GPs than Stan
e Stan has some built-in covariance functions
¢ Hilbert space basis function approximation of GPs is fast for
1D-3D (Riutort-Mayol et al., 2022)
® Birthday example
® Motorcycle example
¢ In case of non-Gaussian outcome models, sampling of
latent variables can be slow (Laplace integration over the
latents coming)

16/17


https://arxiv.org/abs/2004.11408v2
https://avehtari.github.io/casestudies/Birthdays/birthdays.html
https://avehtari.github.io/casestudies/Motorcycle/motorcycle_gpcourse.html

GPs in Stan

GP specific software (e.g. GPy, GPflow, GPyTorch) scale
computationally better for GPs than Stan

Stan has some built-in covariance functions
Hilbert space basis function approximation of GPs is fast for
1D-3D (Riutort-Mayol et al., 2022)
® Birthday example
® Motorcycle example
In case of non-Gaussian outcome models, sampling of
latent variables can be slow (Laplace integration over the
latents coming)
brms:
® covariance matrix based computation:
y ~ gp(x)
* Hilbert space basis function approximation:
y ~ gp(x, k=20)
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Regression and Other Stories

¢ Gelman, Hill, and Vehtari (2020). Regression and Other
Stories.
® uses Bayesian inference, but maths and computation is
minimal
® focuses on different models and how think about modeling
® alot of different examples
¢ https://avehtari.github.io/ROS-Examples/
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Bayesian workflow

Gelman, Vehtari, Simpson, Margossian, Carpenter, Yao, Kennedy, Gabry,
Burkner, and Modrak (2020). Bayesian workflow. arXiv:2011.01808

Modify the model (7)

K an initial model (2.1)
Prior
domain knowledge
‘ Prior predictive check (2.5) conpitationlis

accepted

Pick a new starting model
Replace model component
Enrich/expand the model

Prior is provisionally Evaluate and use model (6)

Use an approximation

‘ Posterior predictive check ‘

Add more data

Cross validation

Fit the model (3)

Modify priors

Influence of individual data points
Influence of prior

@
Prediction

‘ Model is not trustworthy ‘

AN

)
!
!
;

Convergence Diagnostics }
| Poststratification
!
!
!
|
!
!
!
!

Simulation-based calibration
C ion is not valid

Model is provisionally
accepted

Addressing computational issues (5)

‘ Simplify the model ‘ ‘Slackmgmdw\dua\chams‘ Add prior
information

‘ Add more data
Run for small number of iterations

Plot
‘ Run on a subset of data ‘ quantities ‘ Give up

f |
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| |
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! i
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! Implement model ‘ Check for multimodality ‘ !
1| components separately ‘ !
! i
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