
Rest of BDA3 and other reading

• Rest of BDA3
• Gaussian process course in spring
• Regression and Other Stories
• Bayesian Workflow
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Chapter 8: Modelling accounting for data collection

Highly recommended to read. Very informative, but also a dense
chapter.

• We need to model the data collection unless it is ignorable
• We need to know when data collection is ignorable

• Data collection
• Sample surveys
• Designed experiments
• Randomization
• Observational studies
• Censoring and truncation
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Chapter 14: Introduction to regression models

• Justification of conditional modeling
• if joint model factorizes p(y , x |θ, ϕ) = p(y |x , θ)p(x |ϕ)

we can model just p(y |x , θ)

• Gaussian linear model with conjugate prior
• the conditional posterior is multivariate normal
• with fixed prior on weights, the joint posterior is N-Inv-χ2

• these properties are sometimes useful and thus good to
know, but with probabilistic programming less often needed

• Bit on causal analysis (see much more in ROS Ch 18–21)
• Assembling matrix of explanatory variables (see also ROS

Ch 10,12)
• identifiability, collinearity, nonlinear relations, indicator and

categorical variables, interactions
• variable selection is not much discussed (extra lecture)

• Regularization (see also ROS Ch 12)
• not much discussed (see extra lectures)

• Unequal variances and correlations
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Lasso and Bayesian lasso

• Lasso is penalized maximum likelihood linear regression,
with L1 one penalty where the amount penalty is adapted

• penalized maximum likelihood finds the mode given the
penalty parameter, and is almost the same as maximum a
posteriori

• when the amount of penalty is increased, marginal modes of
weak effects go to zero first

• when the amount of penalty is increased, also the relevant
coefficients are shrunk towards zero

• sometimes relaxed lasso is used, where after variable
selection coefficients are re-estimated

• Bayesian lasso uses Laplace distribution as prior
• Laplace prior is equivalent to L1 penalty

• but the Bayesian inference includes distribution for
parameters and that distribution doesn’t shrink to a point at
zero, even if the mode would be at zero

• empirically better results obtained with more sparse priors
• it’s best to separate selection of sensible prior, good

posterior inference, and the decision analysis of which
variables are important
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Sparse priors

from Carvalho, Polson, Scott (2009).
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Regularized horseshoe

• Piironen and Vehtari (2017). Sparsity information and
regularization in the horseshoe and other shrinkage priors. In
Electronic Journal of Statistics, 11(2):5018-5051. Online

• rstanarm: prior=hs()
• brms: prior=horseshoe()
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Projpred selection vs. Lasso
See projpred in an extra lecture

Simulated regression data
n = 50, p = 500, prel = 150, ρ = 0.5
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Chapter 15: Hierarchical linear models

• Since you know hierarchical models, theory is easy
• With probabilistic programming computation is also easy

• BDA3 discusses some other computational issues
• section on transformations for HMC is relevant

(see also Stan user guide 21.7 Reparameterization)

• Fixed, random, and mixed effects models
• we don’t recommend using these terms, but they are so

popular that it’s useful to know them

y ∼ 1 + x fixed / population effect; pooled model
y ∼ 1 + (0 + x | g) random / group effects
y ∼ 1 + x + (1 + x | g) mixed effects; hierarchical model

• ANOVA in section 15.6 (see also stan_aov)
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Chapter 16: Generalized linear models

• Bioassay model is an example of GLM

• Components: (see also ROS Ch 13–15)
1. The linear predictor η = Xβ

2. The link function g(·) and µ = g−1(η)
3. Outcome distribution model with location parameter µ

• the distribution can also depend on dispersion parameter ϕ
• originally just exponential family distributions (e.g. Poisson,

binomial, negative-binomial), which all have natural
location-dispersion parameterization

• after MCMC made computation easy, GLM can refer to
models where outcome distribution is not part of exponential
family and dispersion parameter may have its own latent
linear predictor

deaths ∼ dosage, family = binomial

• Hierarchical GLM natural extension
• 16.3 Weakly informative priors section is excellent although

the recommendation on using Cauchy has changed (see
https://github.com/stan-dev/stan/wiki/
Prior-Choice-Recommendations)

9 / 17
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Chapter 17: Models for robust inference

• For example (see also ROS Ch 15)
normal → t-distribution
Poisson → negative-binomial
binomial → beta-binomial
probit → logistic / robit

• Computation with MCMC easy
• posterior can be multimodal

• rstanarm doesn’t have t-distribution for outcome, but brms
has
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Chapter 18: Models for missing data

• Extends the data collection modelling from Chapter 8
• Useful terms

• Missing completely at random (MCAR)
missingness does not depend on missing values or other
observed values (including covariates)

• Missing at random (MAR)
missingness does not depend on missing values but may
depend on other observed values (including covariates)

• Missing not at random (MNAR)
missingness depends on missing values

• Multiple imputation
1. make a model predicting missing data
2. sample repeatedly from the missing data model to generate

multiple imputed data sets
3. make usual inference for each imputed data set
4. combine results

• mice package is ver flexible

• brms can handle some missing data
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Chapter 21: Gaussian process models

• Gaussian process is
• infinite dimensional extension of normal distribution
• useful prior for non-linear functions
• for any finite number of variables, the marginal is multivariate

normal f1, . . . , fn ∼ N (µ(x1, . . . , xn),K (x1, . . . , xn))

• Often a priori µ = 0
• Prior for smooth non-linear functions, e.g. with

k(x , x ′) = τ2 exp
(
− |x−x ′|2

2l2

)
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Chapter 21: Gaussian process models

• Conditional on covariance function parameter the posterior
is just multivariate normal

• need to make inference for covariance function parameters
given the marginal likelihood

• the exact computation of the marginal likelihood scales
O(N3)

13 / 17



• Easy to make additive models
yt(t) = f1(t) + f2(t) + f3(t) + f4(t) + f5(t) + ϵt
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Chapter 21: Gaussian process models

• For non-Gaussian outcome models similar extension as
GLMs

• Survival model example:
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GPs in Stan

• GP specific software (e.g. GPy, GPflow, GPyTorch) scale
computationally better for GPs than Stan

• Stan has some built-in covariance functions
• Hilbert space basis function approximation of GPs is fast for

1D-3D (Riutort-Mayol et al., 2022)
• Birthday example
• Motorcycle example

• In case of non-Gaussian outcome models, sampling of
latent variables can be slow (Laplace integration over the
latents coming)

• brms:
• covariance matrix based computation:
y ∼ gp(x)

• Hilbert space basis function approximation:
y ∼ gp(x, k=20)

16 / 17
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Regression and Other Stories

• Gelman, Hill, and Vehtari (2020). Regression and Other
Stories.

• uses Bayesian inference, but maths and computation is
minimal

• focuses on different models and how think about modeling
• a lot of different examples
• https://avehtari.github.io/ROS-Examples/
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Bayesian workflow
Gelman, Vehtari, Simpson, Margossian, Carpenter, Yao, Kennedy, Gabry,
Bürkner, and Modrák (2020). Bayesian workflow. arXiv:2011.01808
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