
Outline

Last week

• What is cross-validation

• LOO-PIT checking

• Fast cross-validation (PSIS and K-fold)

• When is cross-validation applicable?

This week

• LOO model comparison and selection (elpd_diff, se)

• Related methods (WAIC, *IC, BF)

• Hypothesis testing

• Potential overfitting

• Model expansion and averaging



Student retention – Posterior predictive distributions
with tidybayes

Latent hierarchical linear model
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Latent hierarchical linear model + spline
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Student retention – Marginal PPC
pp_check(fit, ndraws=100)

Latent hierarchical linear model
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Student retention – LOO intervals
LOO predictive intervals – latent hierarchical linear
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LOO predictive intervals – latent hierarchical linear + spline
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Student retention – LOO-PIT checking
pp_check(fit, type = "loo_pit_qq", ndraws=4000)

LOO-PIT check – latent hierarchical linear
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LOO-PIT check – latent hierarchical linear + spline
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Student retention – R2

Latent hierarchical linear vs. latent hierarchical linear + spline
> loo_R2 ( f i t 4 ) | > round ( d i g i t s =2)

Est imate Est . E r ro r Q2.5 Q97.5
R2 0.92 0.02 0.88 0.95

> loo_R2 ( f i t 6 ) | > round ( d i g i t s =2)
Est imate Est . E r ro r Q2.5 Q97.5

R2 0.97 0.01 0.95 0.98

R2 measures the goodness of the mean of the predictive distribution

Gelman, Goodrich, Gabry, and Vehtari (2019). R-squared for Bayesian regression
models. The American Statistician, 73(3):307-309.

https://doi.org/10.1080/00031305.2018.1549100
https://doi.org/10.1080/00031305.2018.1549100


Student retention – log score – elpd
• information theoretical goodness of the whole distribution
• elpd = expected log predictive density (probability)
• elpd_loo = estimated with LOO predictive densities / probs∑N

n=1 log p(yi |xi, x−i, y−i)
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• information theoretical goodness of the whole distribution
• elpd = expected log predictive density (probability)
• elpd_loo = estimated with LOO predictive densities / probs∑N

n=1 log p(yi |xi, x−i, y−i)

LOO predictive intervals – latent hierarchical linear + spline
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Student retention – log score – elpd
• information theoretical goodness of the whole distribution
• elpd = expected log predictive density (probability)
• elpd_loo = estimated with LOO predictive densities / probs∑N

n=1 log p(yi |xi, x−i, y−i)

LOO predictive intervals – latent hierarchical linear + spline

100

150

200

250

300

0 10 20 30 40
Data point (index)

y
y rep

-8.4 -5.6 -2.9 -2.9 -2.8 -3.0 -4.0 -3.2 -3.9 -3.2 -3.4 -3.2 -2.9 -3.9 -3.4 -3.4 -3.2 -2.7 -2.8 -3.1
-2.5 -2.8 -2.9 -3.4 -5.4 -3.7 -3.1 -3.3 -3.5 -3.2 -3.5 -3.5 -6.6 -3.8 -3.7 -3.4 -2.5 -2.8 -2.9 -3.3



Student retention – log score – elpd
• information theoretical goodness of the whole distribution
• elpd = expected log predictive density (probability)
• elpd_loo = estimated with LOO predictive densities / probs∑N

n=1 log p(yi |xi, x−i, y−i)

LOO predictive intervals – latent hierarchical linear + spline
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Student retention – elpd_loo

Latent hierarchical linear + spline
> loo ( f i t 6 )

Computed from 4000 by 40 log − l i k e l i h o o d mat r i x

Est imate SE
elpd_ loo −141.7 7.2
p_loo 10.9 2.5



Student retention – elpd_loo

Latent hierarchical linear + spline
> loo ( f i t 6 )

Computed from 4000 by 40 log − l i k e l i h o o d mat r i x

Est imate SE
elpd_ loo −141.7 7.2
p_loo 10.9 2.5

Latent hierarchical linear
> loo ( f i t 4 )

Computed from 4000 by 40 log − l i k e l i h o o d mat r i x

Est imate SE
elpd_ loo −184.3 17.3
p_loo 24.3 5.8



Student retention – log score – elpd
LOO predictive intervals – latent hierarchical linear
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LOO predictive intervals – latent hierarchical linear + spline
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

0 3 6
fit6 vs fit4: pointwise elpd_loo difference



Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

0 3 6
fit6 vs fit4: pointwise elpd_loo difference
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Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference

mean ≈ 1.07



Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference

mean ≈ 1.07
sd ≈ 2.26



Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference

mean ≈ 1.07
sd ≈ 2.26
SE = sd/

√
40 ≈ 0.36



Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference

mean ≈ 1.07
sd ≈ 2.26
SE = sd/

√
40 ≈ 0.36

sum ≈ 42.6



Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference

mean ≈ 1.07
sd ≈ 2.26
SE = sd/

√
40 ≈ 0.36

sum ≈ 42.6
SE = sd∗

√
40 ≈ 14.3



Student retention – elpd_loo

Latent hierarchical linear + spline
> loo ( f i t 6 )

Est imate SE
elpd_ loo −141.7 7.2
p_loo 10.9 2.5

Latent hierarchical linear
> loo ( f i t 4 )

Est imate SE
elpd_ loo −184.3 17.3
p_loo 23.8 5.7

> loo_compare ( loo ( f i t 4 ) , loo ( f i t 6 ) )
e l p d _ d i f f s e _ d i f f

f i t 6 0.0 0.0
f i t 4 −42.6 14.3



LOO difference uncertainty estimate (SE) reliability

1. The models make very similar predictions

- if |elpd_loo| < 4, SE is not reliable, but the difference is
small anyway

- selecting a “wrong” model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data

- in nested case, the bias favors the simpler model
- model checking and model extension to avoid misspecified

models (Bayesian workflow)

3. The number of observations is small

- in nested case the skewness favors the simpler model
- any inference with small n is difficult
- if |elpd_loo| > 4, model is well specified, and n > 100 then

the normal approximation is good

Sivula, Magnusson, Matamoros, and Vehtari (2022). Uncertainty in Bayesian
leave-one-out cross-validation based model comparison. arXiv:2008.10296v3.

https://arxiv.org/abs/2008.10296v3
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Log score and elpd_loo

• Log score is not easily interpretable
• but is information theoretically good utility for the goodness of

the whole distribution
• and thus is useful in model comparison



Log score and elpd_loo

• Interpretation in discrete case
• log probability

• For example
• 1

N
∑N

n=1 exp(elpdloo,n) ≈ 4% probability that we predict the
observed value

• compare to guessing uniformly from the data range [121,310]
having 1/(310 − 121 + 1) ≈ 0.5% probability

• Interpretation in continuous case
• can be compared to a simple reference distribution
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• Interpretation in discrete case
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• For example
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• Interpretation in continuous case
• can be compared to a simple reference distribution



Student retention – loo computation

PSIS-LOO
> f i t 4 <− a d d _ c r i t e r i o n ( f i t 4 , ' loo ' )
Pareto k d iagnos t i c values :

Count Pct . Min . n_e f f
( − In f , 0 . 5 ] ( good ) 28 70.0% 399

( 0 . 5 , 0 . 7 ] ( ok ) 7 17.5% 77
( 0 . 7 , 1 ] ( bad ) 4 10.0% 46
(1 , I n f ) ( very bad ) 1 2.5% 49

PSIS-LOO + moment matching
> . . . ( f i t 4 , ' loo ' , moment_match=TRUE, re loo=TRUE, ove rwr i t e =TRUE)
Pareto k d iagnos t i c values :

Count Pct . Min . n_e f f
( − In f , 0 . 5 ] ( good ) 30 75.0% 165

( 0 . 5 , 0 . 7 ] ( ok ) 10 25.0% 77
( 0 . 7 , 1 ] ( bad ) 0 0.0% <NA>
(1 , I n f ) ( very bad ) 0 0.0% <NA>

Paananen, Piironen, Bürkner, and Vehtari (2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16.

https://doi.org/10.1007/s11222-020-09982-2
https://doi.org/10.1007/s11222-020-09982-2


Student retention – loo computation

PSIS-LOO
> f i t 6 <− a d d _ c r i t e r i o n ( f i t 6 , ' loo ' )
Pareto k d iagnos t i c values :

Count Pct . Min . n_e f f
( − In f , 0 . 5 ] ( good ) 34 85.0% 558

( 0 . 5 , 0 . 7 ] ( ok ) 5 12.5% 226
( 0 . 7 , 1 ] ( bad ) 1 2.5% 215
(1 , I n f ) ( very bad ) 0 0.0% <NA>

PSIS-LOO + moment matching
> . . . ( f i t 6 , ' loo ' , moment_match=TRUE, ove rwr i t e =TRUE)
Pareto k d iagnos t i c values :

Count Pct . Min . n_e f f
( − In f , 0 . 5 ] ( good ) 34 85.0% 558

( 0 . 5 , 0 . 7 ] ( ok ) 6 15.0% 226
( 0 . 7 , 1 ] ( bad ) 0 0.0% <NA>
(1 , I n f ) ( very bad ) 0 0.0% <NA>

Paananen, Piironen, Bürkner, and Vehtari (2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16.

https://doi.org/10.1007/s11222-020-09982-2
https://doi.org/10.1007/s11222-020-09982-2


looic?
> loo ( f i t 6 )

Computed from 4000 by 40 log − l i k e l i h o o d mat r i x

Est imate SE
elpd_ loo −141.7 7.2
p_loo 10.9 2.5
l o o i c 283.4 14.4
−−−−−−
Monte Car lo SE of e lpd_ loo i s 0 . 1 .

• loo output shows also looic
• for historical non-Bayesian reasons it’s -2 * elpd_loo

• connection to deviance and information criteria
• you can just ignore it



Information criteria

Information criteria estimate predictive performance, too

• AIC uses maximum likelihood estimate for prediction

• DIC uses posterior mean for prediction

• BIC is a simple approximation for marginal likelihood

• TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

• WAIC is the only Bayesian information criterion

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102
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WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102
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Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
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• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate
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Marginal likelihood and Bayes factor

Bayes Factor p(y |M1 )
p(y |M2 )

Marginal likelihood p(y|M1) =
∫

p(y|𝜃,M1)p(𝜃 |M1)d𝜃

Marginal likelihood with chain rule:
p(y|M1) = p(y1 |M1)p(y2 |y1,M1), . . . , p(yn |y1, . . . , yn−1,M1)

where
p(y1 |M1) =

∫
p(y1 |𝜃,M1)p(𝜃 |M1)d𝜃

p(y2 |y1,M1) =
∫

p(y2 |𝜃,M1)p(𝜃 |y1,M1)d𝜃
· · ·
p(yn |y1, . . . , yn−1,M1) =

∫
p(yn |𝜃,M1)p(𝜃 |y1, . . . , yn−1,M1)d𝜃

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

http://dx.doi.org/10.1214/12-SS102
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations

- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically
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with 0 observations

- which makes it very sensitive to prior and
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior

and
- unstable in case of misspecified models also asymptotically
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models

also asymptotically
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically

• Oelrich, Ding, Magnusson, Vehtari, and Villani (2020). When
are Bayesian model probabilities overconfident?
arXiv:2003.04026.

https://arxiv.org/abs/2003.04026


Predictive model selection

• Student retention
- latent hierarchical linear vs.
- latent hierarchical linear + spline

is a good example where predictive model selection is useful



Sometimes cross-validation is not needed

• In a simple nested case, often easier and more accurate to
analyze posterior distribution of more complex model directly

- instead of comparing
Model 1: y ∼ normal(𝛼, 𝜎)
vs
Model 2: y ∼ normal(𝛼 + 𝛽x, 𝜎)
look at the posterior of 𝛽 directly



Common statistical tests as Bayesian models

• Most common statistical tests are linear models
t-test mean of data stan_glm(y ˜ 1)
paired t-test mean of diffs stan_glm((y1 - y2) ˜ 1)
Pearson correl. linear model stan_glm(y ˜ 1 + x)
two-sample t-test group means stan_glm(y ˜ 1 + gid)
ANOVA hier. model stan_glm(y ˜ 1 + (1 | gid))
. . .

• Possible to extend, e.g., with group specific variances and and
different distributions such t- or Poisson distribution

• and go beyond named tests
• See longer list and illustrations (with lm) at

https://lindeloev.github.io/tests-as-linear/
and
with rstanarm in Regression and other stories

https://lindeloev.github.io/tests-as-linear/
https://avehtari.github.io/ROS-Examples/
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Beta blockers

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to treatment and
control groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died



Beta blockers

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to treatment and
control groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died

d_bin2 <− data . frame (N = c (674 , 680) ,
y = c (39 ,22) ,
grp2 = c ( 0 , 1 ) )

f i t b 1 <− brm ( y | t r i a l s (N) ~ 1 ,
f a m i l y = b inomia l ( ) ,
data = d_bin2 )

f i t b 2 <− brm ( y | t r i a l s (N) ~ 1 + grp2 ,
f a m i l y = b inomia l ( ) ,
data = d_bin2 )



Beta blockers

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to treatment and
control groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died

d_bin2b <− data . frame ( y = c ( rep (1 ,39 ) , rep (0 ,674 −39) ,
rep (1 ,22 ) , rep (0 ,680 −22)) ,

grp2 = c ( rep (0 , 674) , rep (1 , 680 ) ) )

f i t b 1 <− brm ( y ~ 1 , f a m i l y = b e r n o u l l i ( ) , data = d_bin2b )

f i t b 2 <− brm ( y ~ 1 + grp2 , f a m i l y = b e r n o u l l i ( ) , data = d_bin2b )



Beta blockers

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to treatment and
control groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died

d_bin2b <− data . frame ( y = c ( rep (1 ,39 ) , rep (0 ,674 −39) ,
rep (1 ,22 ) , rep (0 ,680 −22)) ,

grp2 = c ( rep (0 , 674) , rep (1 , 680 ) ) )

f i t b 1 <− brm ( y ~ 1 , f a m i l y = b e r n o u l l i ( ) , data = d_bin2b )

f i t b 2 <− brm ( y ~ 1 + grp2 , f a m i l y = b e r n o u l l i ( ) , data = d_bin2b )

> loo_compare ( loo ( f i t b 1 ) , loo ( f i t b 2 ) )
e l p d _ d i f f s e _ d i f f

f i t b 2 0.0 0.0
f i t b 1 −1.6 2.3



Bayesian inference

• Instead of model selection, report full posterior and
• compare to expert information
• combine with utility/cost function

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio



Bayesian inference

• Instead of model selection, report full posterior
• for continuous posterior there is zero probability that e.g.

treatment effect is exactly zero

p(odds = 1) = 0

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio



Bayesian inference

• Instead of model selection, report full posterior
• for continuous posterior we could report the probability that we

know the sign of the effect

p(odds < 1) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio



Bayesian hypothesis testing

• Sometimes people want to make a dichotomous choice
• model selection
• hypothesis testing



Bayesian hypothesis testing

• Instead of model selection, report full posterior and
• for continuous posterior some people compare whether posterior

interval includes null case

95% CI = [0.31, 0.93]

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio



Bayesian hypothesis testing

• Equivalence testing (region of practical equivalence)
• what is the probability that the effect is closer than 𝜖 to null,

where 𝜖 is based on what is practically useful effect size

p(odds not in [0.95,1.05]) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio



Bayesian hypothesis testing

• Equivalence testing (region of practical equivalence)
• some people combine posterior interval and region of practical

equivalence

95% CI = [0.31, 0.93]

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior there is zero probability that e.g.

treatment effect is exactly zero

p(odds = 1) = 0

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

p(odds = 1) = 0

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior we could compute the probability that

we know the sign of the effect

p(odds < 1) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

p(odds < 1) = 0.57

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior some people compare whether posterior

interval includes null case

95% CI = [0.31, 0.93]

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

95% CI = [0.62, 1.5]

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

p(odds not in [0.95,1.05]) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

p(odds not in [0.95,1.05]) = 0.82

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

95% CI = [0.31, 0.93]

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

95% CI = [0.62, 1.5]

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior there is zero probability that e.g.

treatment effect is exactly zero



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior we could compute the probability that

we know the sign of the effect

p(odds < 1) = 0.57

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

p(odds < 1) = 0.51

0.4 0.8 1.2 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior some people compare whether posterior

interval includes null case

95% CI = [0.62, 1.5]

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

95% CI = [0.95, 1.05]

0.4 0.8 1.2 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

p(odds not in [0.95,1.05]) = 0.82

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

p(odds not in [0.95,1.05]) = 0.03

0.4 0.8 1.2 1.6
oddsratio



Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

95% CI = [0.62, 1.5]

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

95% CI = [0.95, 1.05]

0.4 0.8 1.2 1.6
oddsratio



Bayesian hypothesis testing

• Bayes factor
• null model has, e.g., the treatment effect fixed to 0
• assumes that there is non-zero probability that the treatment

effect can be exactly zero (point mass)
• requires posterior inference for the null model, too

BF based p(odds = 1) = 0.5

0.4 0.6 0.8 1.0 1.2
oddsratio

with bridgesampling package, see also BDA3 13.10



Bayesian hypothesis testing

• Bayes factor
• null model has, e.g., the treatment effect fixed to 0
• assumes that there is non-zero probability that the treatment

effect can be exactly zero (point mass)
• requires posterior inference for the null model, too

BF based p(odds = 1) = 0.94

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

with bridgesampling package, see also BDA3 13.10



Bayesian hypothesis testing

• Bayes factor
• null model has, e.g., the treatment effect fixed to 0
• assumes that there is non-zero probability that the treatment

effect can be exactly zero (point mass)
• requires posterior inference for the null model, too

BF based p(odds = 1) = 0.99

0.4 0.8 1.2 1.6
oddsratio

with bridgesampling package, see also BDA3 13.10



Bayesian hypothesis testing

• Bayes factor
• sensitive to the prior choice even when the posterior is not

normal(0,3.5) normal(0,100)

BF based p(odds = 1) = 0.5

0.4 0.6 0.8 1.0 1.2
oddsratio

BF based p(odds = 1) = 0.97

0.4 0.6 0.8 1.0 1.2
oddsratio

with bridgesampling package, see also BDA3 13.10



Bayesian hypothesis testing

• Predictive performance
• is there difference in predictive performance with, e.g., treatment

effect fixed to zero or unknown treatment effect
• requires posterior inference for the null model or projection from

the full to null
• looking at the posterior is better if parameters are independent



Bayesian hypothesis testing

• Predictive performance
• is there difference in predictive performance with, e.g., treatment

effect fixed to zero or unknown treatment effect
• requires posterior inference for the null model or projection from

the full to null
• looking at the posterior is better if parameters are independent

In the beta blockers example

• Leave-one-person-out works, but is less efficient than looking at
the posterior (see
https://users.aalto.fi/~ave/modelselection/betablockers.html)

> loo_compare ( loo ( f i t b 1 ) , loo ( f i t b 2 ) )
e l p d _ d i f f s e _ d i f f

f i t b 2 0.0 0.0
f i t b 1 −1.6 2.3

https://users.aalto.fi/~ave/modelselection/betablockers.html


Bodyfat: many predictors
• Predict bodyfat percentage
• The reference value (siri) is obtained by immersing person in

water. n = 251.
• Which measurements to use in the future?
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Bodyfat: many predictors
• Predict bodyfat percentage
• The reference value (siri) is obtained by immersing person in

water. n = 251.
• Which measurements to use in the future?
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Prediction

• Goal: prediction

• Use all the predictors and sensible prior

• no model selection needed
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Predictive performance based variable selection

• Goal:
• minimize future measurement cost
• easier explainability of the model

• Select the minimal number of covariates with similar predictive
performance as the full model
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Hypothesis testing and posterior dependencies
Looking at the marginal posterior p(𝛽 < 0) can be misleading when
there are many parameters

Marginal posteriors of coefficients in bodyfat example
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Hypothesis testing and posterior dependencies
Looking at the marginal posterior(s) can be misleading when there
are many parameters

Bivariate marginal of weight and height
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Hypothesis testing and posterior dependencies

In bodyfat example, starting from full model

• BF in favor of removing weight (p=0.92)
• LOO in favor of removing weight (p=0.99)

In bodyfat example, starting from model y ∼ abdomen

• BF in favor of adding weight (p=1.0)
• LOO in favor of adding weight (p=1.0)



Predictive performance based variable selection
Projection predictive variable selection selects the minimal set of
variables with similar predictive performance as the full model
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Projected posterior
Projection predictive variable selection selects the minimal set of
variables with similar predictive performance as the full model
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More about projpred in the end of the course



Model selection needed to avoid overfitting?

• Classic example is polynomial model with increasing number of
components

- overfits also with Bayesian inference and weak priors
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Model selection needed to avoid overfitting?

• Classic example is polynomial model with increasing number of
components

- overfits also with Bayesian inference and weak priors
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Model selection needed to avoid overfitting?

• Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions

- more basis functions makes the approximation more
accurate, but doesn’t inflate the prior on function space
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Model is not needed to avoid overfitting

• Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions
- more basis functions makes the approximation more

accurate, but doesn’t inflate the prior on function space
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Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables,
100 observations
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100 observations
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Prior on parameters vs predictions

N(0,3) prior on each coefficient

X1 X2 X3 Xp

Y



Prior on parameters vs predictions

N(0,3) prior on each coefficient
1 variable
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Predictive probabilities
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities

A weak prior on parameters can be a strong prior on predictions that
favors overfitting



Better priors

N(0, 1√p ) prior on each coefficient
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Better priors

N(0, 1√p ) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities

Prior on predictions (almost) fixed when the model gets bigger



Better priors, no overfitting

logistic regression: 30 completely irrelevant variables,
100 observations, N(0, 1√p ) prior

within

test set
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Better priors, no overfitting

logistic regression: 30 completely irrelevant variables,
100 observations, regularized horseshoe prior

within

test set
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Many weak effects, wide prior on parameters

logistic regression: 30 weakly relevant variables,
100 observations, N(0,3) prior

with
in

test set
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Many weak effects, better prior

logistic regression: 30 weakly relevant variables,
100 observations, N(0, 1√p ) prior

within

test set
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Correlating variables, wide prior on parameters

logistic regression: 30 correlating relevant variables,
100 observations, N(0,3) prior

within
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Correlating variables, better prior

logistic regression: 30 correlating relevant variables,
100 observations N(0, 1√p ) prior

within

test set
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Implied prior on R2

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Wide prior on coefficients favors overfitting

Posterior

Prior

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

Bayesian R^2



Implied prior on R2

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Scaled prior on coefficients

Posterior

Prior

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

Bayesian R^2



Implied prior on R2

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Regularized horseshoe prior on coefficients

Posterior

Prior

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

Bayesian R^2



Better priors

For example:

• scaled: many weak effects
• regularized horseshoe, R2-D2: only some relevant
• R2-D2: defined directly for R2

• PCA-type: highly correlating variables



p ≫ n

• With good priors, possible to have more variables than
observations

• e.g. p = 22283, n = 85 demonstrated by Piironen, Paasiniemi,
Vehtari (2020)



Variable selection

Variable selection

1. is not needed to avoid overfitting
2. can be used to reduce costs and improve explainability



Model selection can overfit

• Selection induced bias in cross-validation
- same data is used to assess the performance and make

the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)

• Performance of the selection process itself can be assessed
using two level cross-validation, but it does not help choosing
better models

• Bigger problem if there is a large number of models as in
covariate selection
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Model selection can overfit

• Variable selection with forward selection
• start with null model
• add the variable improving the predictive performance most
• add the next variable improving... and so on
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Model selection can overfit
Wide normal prior
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Reminder: variable selection is not needed with good priors to get
good predictive performance, but may be useful for other purposes



Model selection can overfit
R2D2 prior reduces overfit in model selection
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Model averaging

• Prefer continuous model expansion

• If needed integrate over the model space = model averaging

• Bayesian model averaging is just the usual integration over
unknowns

• Bayesian stacking may work better than BMA in case of
misspecified models or small data

- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking
to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3):917-1003

https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227


Model averaging

• Prefer continuous model expansion

• If needed integrate over the model space = model averaging

• Bayesian model averaging is just the usual integration over
unknowns

• Bayesian stacking may work better than BMA in case of
misspecified models or small data

- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking
to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3):917-1003

https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227


Model averaging

• Prefer continuous model expansion

• If needed integrate over the model space = model averaging

• Bayesian model averaging is just the usual integration over
unknowns

• Bayesian stacking may work better than BMA in case of
misspecified models or small data

- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking
to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3):917-1003

https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227


Model averaging

• Prefer continuous model expansion

• If needed integrate over the model space = model averaging

• Bayesian model averaging is just the usual integration over
unknowns

• Bayesian stacking may work better than BMA in case of
misspecified models or small data

- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking
to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3):917-1003

https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227
https://projecteuclid.org/euclid.ba/1516093227


Cross-validation and model selection

• Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear

• Be careful if using cross-validation to choose from a large set of
models

- selection process can lead to severe overfitting

• Overfitting in selection process is not unique for cross-validation
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Take-home messages

• It’s good to think predictions of observables, because
observables are the only ones we can observe

• Cross-validation can simulate predicting and observing new
data

• Cross-validation is good if you don’t trust your model

• Different variants of cross-validation are useful in different
scenarios

• Cross-validation has high variance, and if you trust your model
you can beat cross-validation in accuracy
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