
Outline
Last week

• What is cross-validation

• LOO-PIT checking

• Fast cross-validation with PSIS

• LOO model comparison and selection (elpd_diff, se)

This week

• Model comparison with LOO-CV

• When is cross-validation applicable?

• K-fold cross-validation

• Related methods (WAIC, *IC, BF)

• Hypothesis testing

• Potential overfitting

• Model expansion and averaging
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Student retention – Posterior predictive distributions
with tidybayes

Latent hierarchical linear model
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Student retention – Marginal PPC
pp_check(fit, ndraws=100)

Latent hierarchical linear model
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100 200 300

y
y rep

3 / 74



Student retention – LOO intervals
LOO predictive intervals – latent hierarchical linear
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Student retention – LOO-PIT checking
pp_check(fit, type = "loo_pit_qq", ndraws=4000)

LOO-PIT check – latent hierarchical linear

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Uniform

LO
O

−
P

IT

LOO-PIT check – latent hierarchical linear + spline
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Student retention – R2

Latent hierarchical linear vs. latent hierarchical linear + spline

> loo_R2(fit4) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5

R2 0.92 0.02 0.88 0.95

> loo_R2(fit6) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5

R2 0.97 0.01 0.95 0.98

R2 measures the goodness of the mean of the predictive distribution

Gelman, Goodrich, Gabry, and Vehtari (2019). R-squared for Bayesian regression
models. The American Statistician, 73(3):307-309.
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Student retention – log score – elpd
• information theoretical goodness of the whole distribution
• elpd = expected log predictive density (probability)
• elpd_loo = estimated with LOO predictive densities / probs∑N

n=1 log p(yi |xi, x−i, y−i)

∑
= -141.7
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Student retention – elpd_loo

Latent hierarchical linear + spline

> loo(fit6)

Computed from 4000 by 40 log-likelihood matrix

Estimate SE
elpd_loo -141.7 7.2
p_loo 10.9 2.5

Latent hierarchical linear

> loo(fit4)

Computed from 4000 by 40 log-likelihood matrix

Estimate SE
elpd_loo -184.3 17.3
p_loo 24.3 5.8
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Student retention – log score – elpd
LOO predictive intervals – latent hierarchical linear
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LOO predictive intervals – latent hierarchical linear + spline

100

150

200

250

300

0 10 20 30 40
Data point (index)

y
y rep

-8.4 -5.6 -2.9 -2.9 -2.8 -3.0 -4.0 -3.2 -3.9 -3.2 -3.4 -3.2 -2.9 -3.9 -3.4 -3.4 -3.2 -2.7 -2.8 -3.1

-2.5 -2.8 -2.9 -3.4 -5.4 -3.7 -3.1 -3.3 -3.5 -3.2 -3.5 -3.5 -6.6 -3.8 -3.7 -3.4 -2.5 -2.8 -2.9 -3.3
∑

= -141.7 9 / 74



Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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fit6 vs fit4: pointwise elpd_loo difference
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Student retention – elpd_loo
Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences
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Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference
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Mean of differences

Uncertainty in mean

0 3 6
fit6 vs fit4: pointwise elpd_loo difference

mean ≈ 1.07
sd ≈ 2.26
SE = sd/

√
40 ≈ 0.36

sum ≈ 42.6
SE = sd∗

√
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Student retention – elpd_loo

Latent hierarchical linear + spline

> loo(fit6)
Estimate SE

elpd_loo -141.7 7.2
p_loo 10.9 2.5

Latent hierarchical linear

> loo(fit4)
Estimate SE

elpd_loo -184.3 17.3
p_loo 23.8 5.7

> loo_compare(loo(fit4), loo(fit6))
elpd_diff se_diff

fit6 0.0 0.0
fit4 -42.6 14.3
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LOO difference uncertainty estimate (SE) reliability

1. The models make very similar predictions

- if |elpd_loo| < 4, SE is not reliable, but the difference is
small anyway

- selecting a “wrong” model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data

- in nested case, the bias favors the simpler model
- model checking and model extension to avoid misspecified

models (Bayesian workflow)

3. The number of observations is small

- in nested case the skewness favors the simpler model
- any inference with small n is difficult
- if |elpd_loo| > 4, model is well specified, and n > 100 then

the normal approximation is good

Sivula, Magnusson, Matamoros, and Vehtari (2022). Uncertainty in Bayesian
leave-one-out cross-validation based model comparison. arXiv:2008.10296v3.
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Log score and elpd_loo

• Log score is not easily interpretable
• but is information theoretically good utility for the goodness of

the whole distribution
• and thus is useful in model comparison
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Log score and elpd_loo

• Interpretation in discrete case
• log probability

• For example
• 1

N
∑N

n=1 exp(elpdloo,n) ≈ 4% probability that we predict the
observed value

• compare to guessing uniformly from the data range [121,310]
having 1/(310 − 121 + 1) ≈ 0.5% probability

• Interpretation in continuous case
• can be compared to a simple reference distribution
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Assumptions about the future observations
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elpd_loo =
∑20

i=1 log p(yi | xi, x−i, y−i) ≈ −29.5
SE = sd(log p(yi | xi, x−i, y−i)) ·

√
20 ≈ 3.3

LOO is ok for fixed / designed x. SE is uncertainty about y | x.

Covariate shift handled with importance weighting or modelling

see Vehtari & Ojanen (2012) and CV-FAQ 15 / 74

http://dx.doi.org/10.1214/12-SS102
https://users.aalto.fi/~ave/modelselection/CV-FAQ.html
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Interpolation vs extrapolation

●

●

●
●

●

●●

●

●●
●

●

●

●

●●

●●

●
●

●
●

●●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
578

579

580

581

582

0 10 20 30 40 50
x

y
 

• Extrapolation is more difficult item<5> In high dimensional case
mostly extrapolation
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Cross-validation for time series?
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Can LOO or other cross-validation be used with time series?
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Cross-validation for time series
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Cross-validation for time series
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Leave-future-out (LFO) cross-validation is better for predicting future
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Cross-validation for time series
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Cross-validation for time series
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Cross-validation for hierarchical data
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Can LOO or other cross-validation be used with hierarchical data?
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Cross-validation for hierarchical data
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Cross-validation for hierarchical data
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Cross-validation for hierarchical data
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Cross-validation for hierarchical data
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Cross-validation for hierarchical data
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Summary of data generating mechanisms and
prediction tasks

• You have to make some assumptions on data generating
mechanism

• Use the knowledge of the prediction task if available

• Cross-validation can be used to analyse different parts, even if
there is no clear prediction task

see Vehtari & Ojanen (2012) and CV-FAQ
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Pareto smoothed importance sampling CV variants

• PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO

- Stan demo of the challenges and integrated LOO at
https://users.aalto.fi/~ave/modelselection/roaches.html

- see also Merkel, Furr and Rabe-Hesketh (2018)

• PSIS-LOO for non-factorized models
- mc-stan.org/loo/articles/loo2-non-factorizable.html

• PSIS-LOO for time series
- Approximate leave-future-out cross-validation (LFO-CV)

mc-stan.org/loo/articles/loo2-lfo.html
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K-fold cross-validation

• K-fold cross-validation can approximate LOO
- the same use cases as with LOO

• K-fold cross-validation can be used for hierarchical models
- good for leave-one-group-out

• K-fold cross-validation can be used for time series
- with leave-block-out
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K-fold-CV code

• RStan, CmdStanR
See vignette http://mc-stan.org/loo/articles/loo2-elpd.html

• RStanARM, brms
kfold(fit)

• Alternative data divisions
kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

24 / 74
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looic?

> loo(fit6)

Computed from 4000 by 40 log-likelihood matrix

Estimate SE
elpd_loo -141.7 7.2
p_loo 10.9 2.5
looic 283.4 14.4
------
Monte Carlo SE of elpd_loo is 0.1.

• loo output shows also looic
• for historical non-Bayesian reasons it’s -2 * elpd_loo

• connection to deviance and information criteria
• you can just ignore it (I’d prefer it would not be shown)
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Information criteria

Information criteria estimate predictive performance, too

• AIC uses maximum likelihood estimate for prediction

• DIC uses posterior mean for prediction

• BIC is a simple approximation for marginal likelihood

• TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

• WAIC is the only Bayesian information criterion

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

27 / 74

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102


WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

27 / 74

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102


WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

27 / 74

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102


WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

27 / 74

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102


WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

27 / 74

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102


WAIC vs PSIS-LOO

• WAIC has the same target and assumptions as LOO

• PSIS-LOO is more accurate

• PSIS-LOO has much better diagnostics

• moment matching and reloo are natural improvements for
PSIS-LOO

• LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

• Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413–1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.

27 / 74

http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://link.springer.com/article/10.1007/s11222-016-9696-4
http://dx.doi.org/10.1214/12-SS102
http://dx.doi.org/10.1214/12-SS102


Marginal likelihood and Bayes factor

Bayes Factor p(y |M1 )
p(y |M2 )

Marginal likelihood p(y|M1) =
∫

p(y|𝜃,M1)p(𝜃 |M1)d𝜃

Marginal likelihood with chain rule:
p(y|M1) = p(y1 |M1)p(y2 |y1,M1), . . . , p(yn |y1, . . . , yn−1,M1)

where
p(y1 |M1) =

∫
p(y1 |𝜃,M1)p(𝜃 |M1)d𝜃

p(y2 |y1,M1) =
∫

p(y2 |𝜃,M1)p(𝜃 |y1,M1)d𝜃
· · ·
p(yn |y1, . . . , yn−1,M1) =

∫
p(yn |𝜃,M1)p(𝜃 |y1, . . . , yn−1,M1)d𝜃

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations

- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically
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Marginal likelihood / Bayes factor

• Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically

• Oelrich, Ding, Magnusson, Vehtari, and Villani (2020). When
are Bayesian model probabilities overconfident?
arXiv:2003.04026.
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Predictive model selection

• Predictive model selection is most natural when the models are
used for making predictions

• Predictive model selection can be also useful when the models
are not directly used for prediction but for obtaining insights

• if there is no single independent parameter to look at

• Student retention
- latent hierarchical linear vs.
- latent hierarchical linear + spline

is a good example where predictive model selection is useful
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Sometimes cross-validation is not needed

• In a simple nested case, often easier and more accurate to
analyze posterior distribution of an independent parameter
directly

- instead of comparing
Model 1: y ∼ normal(𝛼, 𝜎)
vs
Model 2: y ∼ normal(𝛼 + 𝛽x, 𝜎)
look at the posterior of 𝛽 directly

• Randomized control treatment studies is natural example

32 / 74



Sometimes cross-validation is not needed

• In a simple nested case, often easier and more accurate to
analyze posterior distribution of an independent parameter
directly

- instead of comparing
Model 1: y ∼ normal(𝛼, 𝜎)
vs
Model 2: y ∼ normal(𝛼 + 𝛽x, 𝜎)
look at the posterior of 𝛽 directly

• Randomized control treatment studies is natural example

32 / 74



Common statistical tests as Bayesian models

• Most common statistical tests are linear models
test model formula
t-test mean of data y ~ 1
paired t-test mean of diffs (y1 - y2) ~ 1
Pearson correl. linear model y ~ 1 + x
two-sample t-test group means y ~ 1 + gid
ANOVA hier. model y ~ 1 + (1 | gid)
. . .

• Possible to extend, e.g., with group specific variances and and
different distributions such t- or Poisson distribution

• and go beyond named tests
• See longer list and illustrations (with lm) at

https://lindeloev.github.io/tests-as-linear/
and
with rstanarm in Regression and other stories
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Beta blockers

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to control and
treatment groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died
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Beta blockers

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to treatment and
control groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died

d_bin2 <- data.frame(N = c(674, 680),
y = c(39,22),
grp2 = c(0,1))

fitb1 <- brm(y | trials(N) ~ 1, family = binomial(), data = d_bin2)

fitb2 <- brm(y | trials(N) ~ 1 + grp2, family = binomial(), data = d_bin2)

> loo_compare(loo(fitb1),loo(fitb2))
elpd_diff se_diff

fitb2 0.0 0.0
fitb1 -1.6 2.3
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Posterior inference

• Instead of model selection, report full posterior and
• compare to expert information
• combine with utility/cost function

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio
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• for continuous posterior there is zero probability that e.g.

treatment effect is exactly zero

p(odds = 1) = 0
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Posterior inference

• Instead of model selection, report full posterior
• for continuous posterior we could report the probability that we

know the sign of the effect

p(odds < 1) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio
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Bayesian hypothesis testing

• Sometimes people want to make a dichotomous choice
• model selection
• hypothesis testing

• For example, need to make a decision whether continue with
bigger clinical trials or give permission to sell a drug

• the first decision requires estimates of trial costs and sales
profits, too

• the second decision is based on safety
• more abiut decision analysis next week

• Now we look at idealized hypothesis testing
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Bayesian hypothesis testing

• Instead of model selection, report full posterior and
• for continuous posterior some people compare whether posterior

interval includes null case

95% CI = [0.31, 0.93]

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio
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Bayesian hypothesis testing

• Equivalence testing (region of practical equivalence)
• what is the probability that the effect is closer than 𝜖 to null,

where 𝜖 is based on what is practically useful effect size

p(odds not in [0.95,1.05]) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio
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Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• for continuous posterior we could compute the probability that

we know the sign of the effect

p(odds < 1) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

p(odds < 1) = 0.57
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Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

p(odds not in [0.95,1.05]) = 0.99

0.4 0.6 0.8 1.0 1.2 1.4
oddsratio

p(odds not in [0.95,1.05]) = 0.82
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Bayesian hypothesis testing
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• for continuous posterior there is zero probability that e.g.

treatment effect is exactly zero
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• Instead of hypothesis testing, report full posterior
• for continuous posterior we could compute the probability that

we know the sign of the effect

p(odds < 1) = 0.57

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

p(odds < 1) = 0.51
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Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

p(odds not in [0.95,1.05]) = 0.82

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

p(odds not in [0.95,1.05]) = 0.03

0.4 0.8 1.2 1.6
oddsratio
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Bayesian hypothesis testing

• Instead of hypothesis testing, report full posterior
• region of practical equivalence (ROPE)

95% CI = [0.62, 1.5]

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

95% CI = [0.95, 1.05]

0.4 0.8 1.2 1.6
oddsratio
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Bayesian hypothesis testing

• Bayes factor
• null model has, e.g., the treatment effect fixed to 0
• assumes that there is non-zero probability that the treatment

effect can be exactly zero (point mass)
• requires posterior inference for the null model, too

BF based p(odds = 1) = 0.5

0.4 0.6 0.8 1.0 1.2
oddsratio

with bridgesampling package, see also BDA3 13.10 42 / 74



Bayesian hypothesis testing

• Bayes factor
• null model has, e.g., the treatment effect fixed to 0
• assumes that there is non-zero probability that the treatment

effect can be exactly zero (point mass)
• requires posterior inference for the null model, too

BF based p(odds = 1) = 0.94

0.4 0.6 0.8 1.0 1.2 1.4 1.6
oddsratio

with bridgesampling package, see also BDA3 13.10 42 / 74



Bayesian hypothesis testing

• Bayes factor
• null model has, e.g., the treatment effect fixed to 0
• assumes that there is non-zero probability that the treatment

effect can be exactly zero (point mass)
• requires posterior inference for the null model, too

BF based p(odds = 1) = 0.99

0.4 0.8 1.2 1.6
oddsratio

with bridgesampling package, see also BDA3 13.10 42 / 74



Bayesian hypothesis testing

• Bayes factor
• sensitive to the prior choice even when the posterior is not

normal(0,3.5) normal(0,100)

BF based p(odds = 1) = 0.5

0.4 0.6 0.8 1.0 1.2
oddsratio

BF based p(odds = 1) = 0.97

0.4 0.6 0.8 1.0 1.2
oddsratio

with bridgesampling package, see also BDA3 13.10
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Bayesian hypothesis testing

• Predictive performance
• is there difference in predictive performance with, e.g., treatment

effect fixed to zero or unknown treatment effect
• requires posterior inference for the null model or projection from

the full to null
• looking at the posterior is better if parameters are independent

44 / 74



Bayesian hypothesis testing

• Predictive performance
• is there difference in predictive performance with, e.g., treatment

effect fixed to zero or unknown treatment effect
• requires posterior inference for the null model or projection from

the full to null
• looking at the posterior is better if parameters are independent

In the beta blockers example

• Leave-one-person-out works, but is less efficient than looking at
the posterior (see
https://users.aalto.fi/~ave/modelselection/betablockers.html)

> loo_compare(loo(fitb1),loo(fitb2))
elpd_diff se_diff

fitb2 0.0 0.0
fitb1 -1.6 2.3

• For another similar, but more elaborate example, see https:
//users.aalto.fi/~ave/casestudies/Nabiximols/nabiximols.html
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elpd_diff se_diff
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Bodyfat: many predictors
• Predict bodyfat percentage
• The reference value (siri) is obtained by immersing person in

water. n = 251.
• Which measurements to use in the future?
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Bodyfat: many predictors
• Predict bodyfat percentage
• The reference value (siri) is obtained by immersing person in

water. n = 251.
• Which measurements to use in the future?
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Prediction

• Goal: prediction

• Use all the predictors and sensible prior

• no model selection needed
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Predictive performance based variable selection

• Goal:
• minimize future measurement cost
• easier explainability of the model

• Select the minimal number of covariates with similar predictive
performance as the full model
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Hypothesis testing and posterior dependencies
Looking at the marginal posterior p(𝛽 < 0) can be misleading when
there are many parameters

Marginal posteriors of coefficients in bodyfat example
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Hypothesis testing and posterior dependencies
Looking at the marginal posterior(s) can be misleading when there
are many parameters

Bivariate marginal of weight and height
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Hypothesis testing and posterior dependencies

In bodyfat example, starting from full model

• BF in favor of removing weight (p=0.92)
• LOO in favor of removing weight (p=0.99)

In bodyfat example, starting from model y ∼ abdomen

• BF in favor of adding weight (p=1.0)
• LOO in favor of adding weight (p=1.0)
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Predictive performance based variable selection
Projection predictive variable selection selects the minimal set of
variables with similar predictive performance as the full model
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Projected posterior
Projection predictive variable selection selects the minimal set of
variables with similar predictive performance as the full model

weight

abdomen

−5 0 5 10

More about projpred in the end of the course
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Model selection needed to avoid overfitting?

• Classic example is polynomial model with increasing number of
components

- overfits also with Bayesian inference and weak priors
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Model selection needed to avoid overfitting?

• Classic example is polynomial model with increasing number of
components

- overfits also with Bayesian inference and weak priors
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Simulated data by Richard McElreath

54 / 74



Model selection needed to avoid overfitting?

• Classic example is polynomial model with increasing number of
components

- overfits also with Bayesian inference and weak priors
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Polynomial basis functions
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Model selection needed to avoid overfitting?

• Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions

- more basis functions makes the approximation more
accurate, but doesn’t inflate the prior on function space
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Model is not needed to avoid overfitting

• Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions
- more basis functions makes the approximation more

accurate, but doesn’t inflate the prior on function space
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GP basis functions
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Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables,
100 observations
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Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables,
100 observations

within

test set
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Prior on parameters vs predictions

N(0,3) prior on each coefficient

X1 X2 X3 Xp

Y
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
1 variable

0.00 0.25 0.50 0.75 1.00
Predictive probabilities
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
2 variables
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
3 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities

A weak prior on parameters can be a strong prior on predictions that
favors overfitting 58 / 74



Better priors

N(0, 1√p ) prior on each coefficient

X1 X2 X3 Xp

Y
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Better priors

N(0, 1√p ) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities

Prior on predictions (almost) fixed when the model gets bigger
59 / 74



Better priors, no overfitting

logistic regression: 30 completely irrelevant variables,
100 observations, N(0, 1√p ) prior

within

test set
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Better priors, no overfitting

logistic regression: 30 completely irrelevant variables,
100 observations, regularized horseshoe prior

within

test set
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Many weak effects, wide prior on parameters

logistic regression: 30 weakly relevant variables,
100 observations, N(0,3) prior

with
in

test set
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Many weak effects, better prior

logistic regression: 30 weakly relevant variables,
100 observations, N(0, 1√p ) prior

within

test set
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Correlating variables, wide prior on parameters

logistic regression: 30 correlating relevant variables,
100 observations, N(0,3) prior

within

test set−100
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Correlating variables, better prior

logistic regression: 30 correlating relevant variables,
100 observations N(0, 1√p ) prior

within

test set
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Implied prior on R2

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Wide prior on coefficients favors overfitting

Posterior

Prior

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

Bayesian R^2
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Implied prior on R2

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Scaled prior on coefficients

Posterior

Prior

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

Bayesian R^2
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Implied prior on R2

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Regularized horseshoe prior on coefficients

Posterior

Prior

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1

Bayesian R^2
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Better priors

For example:

• scaled: many weak effects
• regularized horseshoe, R2-D2: only some relevant
• R2-D2: defined directly for R2

• PCA-type: highly correlating variables
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p ≫ n

• With good priors, possible to have more variables than
observations

• e.g. p = 22283, n = 85 demonstrated by Piironen, Paasiniemi,
Vehtari (2020)
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Variable selection

Variable selection

1. is not needed to avoid overfitting
2. can be used to reduce costs and improve explainability
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Model selection can overfit

• Selection induced bias in cross-validation
- same data is used to assess the performance and make

the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)

• Performance of the selection process itself can be assessed
using two level cross-validation, but it does not help choosing
better models

• Bigger problem if there is a large number of models as in
covariate selection
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Model selection can overfit

• Variable selection with forward selection
• start with null model
• add the variable improving the predictive performance most
• add the next variable improving... and so on
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Model selection can overfit

• Variable selection with forward selection
• start with null model
• add the variable improving the predictive performance most
• add the next variable improving... and so on
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Model selection can overfit
Wide normal prior
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Reminder: variable selection is not needed with good priors to get
good predictive performance, but may be useful for other purposes
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Model selection can overfit
R2D2 prior reduces overfit in model selection
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Model averaging

• Prefer continuous model expansion

• If needed integrate over the model space = model averaging

• Bayesian model averaging is just the usual integration over
unknowns

• Bayesian stacking may work better than BMA in case of
misspecified models or small data

- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking
to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3):917-1003
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Cross-validation and model selection

• Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear

• Be careful if using cross-validation to choose from a large set of
models

- selection process can lead to severe overfitting

• Overfitting in selection process is not unique for cross-validation
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Take-home messages

• It’s good to think predictions of observables, because
observables are the only ones we can observe

• Cross-validation can simulate predicting and observing new
data

• Cross-validation is good if you don’t trust your model

• Different variants of cross-validation are useful in different
scenarios

• Cross-validation has high variance, and if you trust your model
you can beat cross-validation in accuracy
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