Outline

Last week

e What is cross-validation

e LOO-PIT checking

e Fast cross-validation with PSIS

e OO model comparison and selection (elpd_diff, se)
This week

e Model comparison with LOO-CV

e When is cross-validation applicable?

e K-fold cross-validation

Related methods (WAIC, *IC, BF)

Hypothesis testing

Potential overfitting
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Student retention — Posterior predictive distributions

with tidybayes

Latent hierarchical linear model
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Student retention — Marginal PPC

pp_check(fit, ndraws=100)
Latent hierarchical linear model

-y
Yrep
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Latent hierarchical linear model + spline

Yrep
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Student retention — LOO intervals

LOO predictive intervals — latent hierarchical linear
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Student retention — LOO-PIT checking

pp_check(fit, type = "loo_pit_qgq", ndraws=4000)

LOO-PIT check — latent hierarchical linear
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Student retention — R?

Latent hierarchical linear vs. latent hierarchical linear + spline
> loo_R2(fit4) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5
R2 0.92 0.02 0.88 0.95
> loo_R2(fit6) |> round(digits=2)

Estimate Est.Error Q2.5 Q97.5
R2 0.97 0.01 .95 0.98

R? measures the goodness of the mean of the predictive distribution

Gelman, Goodrich, Gabry, and Vehtari (2019). R-squared for Bayesian regression
models. The American Statistician, 73(3):307-309.
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Student retention — log score — elpd
® information theoretical goodness of the whole distribution
® elpd = expected log predictive density (probability)

® elpd_loo = estimated with LOO predictive densities / probs
N log p(yilxi,x_i, y—:)
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Student retention — log score — elpd
® information theoretical goodness of the whole distribution
® elpd = expected log predictive density (probability)

® elpd_loo = estimated with LOO predictive densities / probs
N log p(yilxi,x_i, y—:)

LOO predictive intervals — latent hierarchical linear + spline

0 10 20 30 40
Data point (index)
-8.4-5.6-2.9-29-28-3.0-4.0-3.2-3.9-3.2-3.4 -32-2.9-3.9-3.4 -3.4 -3.2-2.7 -2.8 -3.1
-25-2.8-2.9-3.4-54-3.7-3.1-3.3-3.5-3.2-3.5-3.5-6.6 -3.8-3.7-3.4 -25-2.8 -2.9-3.3

[ %

Yrep

7/74



Student retention — log score — elpd
® information theoretical goodness of the whole distribution
® elpd = expected log predictive density (probability)

® elpd_loo = estimated with LOO predictive densities / probs
N log p(yilxi,x_i, y—:)

LOO predictive intervals — latent hierarchical linear + spline
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Student retention — elpd_loo

Latent hierarchical linear + spline

> loo(fit6)

Computed from 4000 by 40 log-likelihood matrix
Estimate SE

elpd_loo -141.7 7.2
p_loo 10.9 2.5

8/74



Student retention — elpd_loo

Latent hierarchical linear + spline

> loo(fit6)

Computed from 4000 by 40 log-likelihood matrix
Estimate SE

elpd_loo -141.7 7.2
p_loo 10.9 2.5

Latent hierarchical linear

> loo(fit4)

Computed from 4000 by 40 log-likelihood matrix
Estimate SE

elpd_loo -184.3 17.3

p_loo 24.3 5.8
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Student retention — log score — elpd
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LOO predictive intervals — latent hierarchical linear + spline
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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fit4: pointwise elpd_loo
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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fité vs fit4: pointwise elpd_loo difference
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

0 3 6
fité vs fit4: pointwise elpd_loo difference
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fité vs fit4: pointwise elpd_loo difference
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences mean = 1.07

Uncertainty in mean

0 3 6
fité vs fit4: pointwise elpd_loo difference
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences mean = 1.07
sd ~ 2.26

Uncertainty in mean

0 3 6
fité vs fit4: pointwise elpd_loo difference
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences mean = 1.07
sd ~ 2.26

o SE = sd/V40 ~ 0.36
Uncertainty in mean

0 3 6
fité vs fit4: pointwise elpd_loo difference
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fité vs fit4: pointwise elpd_loo difference

mean =~ 1.07
sd ~ 2.26
SE = sd/V40 ~ 0.36

sum =~ 42.6
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Student retention — elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Mean of differences

Uncertainty in mean

0 3 6
fité vs fit4: pointwise elpd_loo difference

mean =~ 1.07
sd ~ 2.26
SE = sd/V40 ~ 0.36

sum ~ 42.6
SE = sd«V40 ~ 14.3
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Student retention — elpd_loo

Latent hierarchical linear + spline

> loo(fit6)

Estimate SE
elpd_loo -141.7 7.2
p_Lloo 10.9 2.5

Latent hierarchical linear

> loo(fit4)

Estimate SE
elpd_loo -184.3 17.3
p_Lloo 23.8 5.7

> loo_compare(loo(fit4), loo(fit6))
elpd_diff se_diff

fit6 0.0 0.0

fit4 -42.6 14.3
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LOOQ difference uncertainty estimate (SE) reliability

1. The models make very similar predictions

2. The models are misspecified with outliers in the data

3. The number of observations is small

Sivula, Magnusson, Matamoros, and Vehtari (2022). Uncertainty in Bayesian

leave-one-out cross-validation based model comparison. arXiv:2008.10296v3.
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LOOQ difference uncertainty estimate (SE) reliability

1. The models make very similar predictions
- if |elpd_loo| < 4, SE is not reliable, but the difference is

small anyway
- selecting a “wrong” model has small cost
- in nested case, the skewness favors the simpler model
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- if |elpd_loo| < 4, SE is not reliable, but the difference is
small anyway

- selecting a “wrong” model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data
- in nested case, the bias favors the simpler model
- model checking and model extension to avoid misspecified
models (Bayesian workflow)
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LOOQ difference uncertainty estimate (SE) reliability

1. The models make very similar predictions
- if |elpd_loo| < 4, SE is not reliable, but the difference is
small anyway
- selecting a “wrong” model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data
- in nested case, the bias favors the simpler model

- model checking and model extension to avoid misspecified
models (Bayesian workflow)

3. The number of observations is small
- in nested case the skewness favors the simpler model
- any inference with small » is difficult

- if |elpd_loo| > 4, model is well specified, and n > 100 then
the normal approximation is good

Sivula, Magnusson, Matamoros, and Vehtari (2022). Uncertainty in Bayesian

leave-one-out cross-validation based model comparison. arXiv:2008.10296v3.
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Log score and elpd_loo

® Log score is not easily interpretable

¢ but is information theoretically good utility for the goodness of
the whole distribution

¢ and thus is useful in model comparison
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Log score and elpd_loo

¢ |nterpretation in discrete case
® |og probability
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® |og probability
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o L3N exp(elpdy,,) ~ 4% probability that we predict the
observed value

® compare to guessing uniformly from the data range [121,310]
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Log score and elpd_loo

¢ |nterpretation in discrete case
® |og probability
® For example
o L3N exp(elpdy,,) ~ 4% probability that we predict the
observed value

® compare to guessing uniformly from the data range [121,310]
having 1/(310 — 121 + 1) ~ 0.5% probability (log score -210)

® Interpretation in continuous case
® can be compared to a simple reference distribution
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Assumptions about the future observations
Fixed / designed x
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elpd_loo = 3., log p(yi | i, x—i»y—i) ~ =29.5
SE = sd(log p(y; | xi,x—i, y—i)) - ¥20 ~ 3.3
LOO is ok for fixed / designed x. SE is uncertainty about y | x.

see Vehtari & Ojanen (2012) and CV-FAQ

15/74
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https://users.aalto.fi/~ave/modelselection/CV-FAQ.html

Assumptions about the future observations
Distribution for x
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X

elpd_loo = 3., log p(yi | i, x—i»y—i) ~ =29.5
SE = sd(log p(y; | xi,x—i, y—i)) - ¥20 ~ 3.3
LOO is ok for random x. SE is uncertainty about y | x and x.

see Vehtari & Ojanen (2012) and CV-FAQ
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Assumptions about the future observations
Distribution for x

7.5+
5.0

2.5

0.0 1

0 5 10 15 20

X
elpd_loo = 3., log p(yi | i, x—i»y—i) ~ =29.5
SE = sd(log p(y; | xi,x—i, y—i)) - ¥20 ~ 3.3
LOO is ok for random x. SE is uncertainty about y | x and x.
Covariate shift handled with importance weighting or modelling
see Vehtari & Ojanen (2012) and CV-FAQ

15/74


http://dx.doi.org/10.1214/12-SS102
https://users.aalto.fi/~ave/modelselection/CV-FAQ.html

Interpolation vs extrapolation
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Interpolation vs extrapolation

Nonlinear model fit
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Interpolation vs extrapolation

Nonlinear model fit + new data
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Interpolation vs extrapolation

Nonlinear model fit + new data
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e Extrapolation is more difficult item<5> In high dimensional case
mostly extrapolation
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Cross-validation for time series?

582
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Can LOO or other cross-validation be used with time series?
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Cross-validation for time series

Level (feet)

Level (feet)

Leave-one-out cross-validation is ok for assessing conditional model
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Cross-validation for time series

Level (feet)

Level (feet)

Leave-future-out (LFO) cross-validation is better for predicting future
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Cross-validation for time series
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m-step-ahead cross-validation is better for predicting further future
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Cross-validation for time series

Level (feet)

Level (feet)

m-step-ahead leave-a-block-out cross-validation
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Cross-validation for hierarchical data

Rats data
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Can LOO or other cross-validation be used with hierarchical data?
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Cross-validation for hierarchical data

Leave—one—out?
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Cross-validation for hierarchical data

1-step—ahead?
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Cross-validation for hierarchical data

Leave—one-time—point—-out?

300

Weight

200

30
Yes!

19/74



Cross-validation for hierarchical data

Leave—one-rat—out?
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Cross-validation for hierarchical data

Predict given initial weight?
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Summary of data generating mechanisms and
prediction tasks

e You have to make some assumptions on data generating
mechanism

e Use the knowledge of the prediction task if available

e Cross-validation can be used to analyse different parts, even if
there is no clear prediction task

see Vehtari & Ojanen (2012) and CV-FAQ
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Pareto smoothed importance sampling CV variants

e PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO

- Stan demo of the challenges and integrated LOO at
https://users.aalto.fi/~ave/modelselection/roaches.html

- see also Merkel, Furr and Rabe-Hesketh (2018)

21/74
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Pareto smoothed importance sampling CV variants

e PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO

- Stan demo of the challenges and integrated LOO at
https://users.aalto.fi/~ave/modelselection/roaches.html

- see also Merkel, Furr and Rabe-Hesketh (2018)

e PSIS-LOO for non-factorized models
- mc-stan.org/loo/articles/loo2-non-factorizable.html
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Pareto smoothed importance sampling CV variants

e PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO

- Stan demo of the challenges and integrated LOO at
https://users.aalto.fi/~ave/modelselection/roaches.html

- see also Merkel, Furr and Rabe-Hesketh (2018)

e PSIS-LOO for non-factorized models
- mc-stan.org/loo/articles/loo2-non-factorizable.html

o PSIS-LOO for time series

- Approximate leave-future-out cross-validation (LFO-CV)
mc-stan.org/loo/articles/loo2-1fo.html
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K-fold cross-validation

e K-fold cross-validation can approximate LOO
- the same use cases as with LOO

e K-fold cross-validation can be used for hierarchical models
- good for leave-one-group-out

e K-fold cross-validation can be used for time series
- with leave-block-out
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Level (feet)

Balance k—fold approximation of LOO
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Random k-fold approximation of LOO
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Leave—one-rat—out
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K-fold-CV code

e RStan, CmdStanR
See vignette http://mc-stan.org/loo/articles/loo2-elpd.html

e RStanARM, brms
kfold(fit)

e Alternative data divisions
kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()
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looic?

> loo(fit6)
Computed from 4000 by 40 log-likelihood matrix

Estimate SE
elpd_loo -141.7 7.2
p_loo 10.9 2.5
looic 283.4 14.4

Monte Carlo SE of elpd_loo is 0.1.

® loo output shows also looic
e for historical non-Bayesian reasons it's -2 * elpd_loo

® connection to deviance and information criteria
® you can just ignore it (I'd prefer it would not be shown)

25/74



Information criteria

Information criteria estimate predictive performance, too

e AIC uses maximum likelihood estimate for prediction

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Information criteria estimate predictive performance, too

e AIC uses maximum likelihood estimate for prediction
e DIC uses posterior mean for prediction

e BIC is a simple approximation for marginal likelihood
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Information criteria

Information criteria estimate predictive performance, too

AIC uses maximum likelihood estimate for prediction

DIC uses posterior mean for prediction

BIC is a simple approximation for marginal likelihood

TIC, NIC, RIC, PIC, BPIC, QIC, AlCec, ...

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Information criteria

Information criteria estimate predictive performance, too

e AIC uses maximum likelihood estimate for prediction

DIC uses posterior mean for prediction

BIC is a simple approximation for marginal likelihood

TIC, NIC, RIC, PIC, BPIC, QIC, AlCec, ...

WAIC is the only Bayesian information criterion

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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WAIC vs PSIS-LOO

e WAIC has the same target and assumptions as LOO

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413-1432

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model

assessment, selection and comparison. Statistics Surveys, 6:142-228.
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e WAIC has the same target and assumptions as LOO
e PSIS-LOO is more accurate

e PSIS-LOO has much better diagnostics
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WAIC vs PSIS-LOO

WAIC has the same target and assumptions as LOO

PSIS-LOO is more accurate

PSIS-LOO has much better diagnostics

moment matching and reloo are natural improvements for
PSIS-LOO

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
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WAIC vs PSIS-LOO

e WAIC has the same target and assumptions as LOO

PSIS-LOO is more accurate

PSIS-LOO has much better diagnostics

moment matching and reloo are natural improvements for
PSIS-LOO

LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
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WAIC vs PSIS-LOO

e WAIC has the same target and assumptions as LOO
e PSIS-LOO is more accurate
e PSIS-LOO has much better diagnostics

e moment matching and reloo are natural improvements for
PSIS-LOO

e LOO makes the prediction assumption more clear,
which helps if K-fold-CV is needed instead

e Multiplying by -2 doesn’t give any benefit
(Watanabe didn’t multiply by -2)

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413-1432

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model

assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Marginal likelihood and Bayes factor

pOIMy1)
p(yIM2)

Marginal likelinood p(y|M) = [ p(y6, M1)p(6|M;)d6

Bayes Factor

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Marginal likelihood and Bayes factor

p(yIMy)
p(yIM2)

Marginal likelinood p(y|M) = [ p(y6, M1)p(6|M;)d6

Bayes Factor

Marginal likelihood with chain rule:
pOIM1) = p(IMD)p 2y, M), - o pOalyts -« oy Yam1, M)

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Marginal likelihood and Bayes factor

pOyIMy)
Bayes Factor PO

Marginal likelinood p(y|M) = [ p(y6, M1)p(6|M;)d6

Marginal likelihood with chain rule:

pOIMy) = piIMO)p(yalyr, Ma), ... palyts - ooy Y1, M)
where

p(y1IMy) = [ p(y116, M1)p(61M1)d6

pO2ly1, My) = [ p(y216, M1)p(81y1, M)d6

POy - Y1, M) = [ p(yal0, MD)P(Oly1, ., Y1, M1)dO

Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
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Marginal likelihood / Bayes factor

e Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
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Marginal likelihood / Bayes factor

e Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior
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Marginal likelihood / Bayes factor

e Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models
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Marginal likelihood / Bayes factor

e Like leave-future-out 1-step-ahead cross-validation but starting
with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically
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Marginal likelihood / Bayes factor

e Like leave-future-out 1-step-ahead cross-validation but starting

with 0 observations

- which makes it very sensitive to prior and

- unstable in case of misspecified models also asymptotically
e QOelrich, Ding, Magnusson, Vehtari, and Villani (2020). When

are Bayesian model probabilities overconfident?

arXiv:2003.04026.
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Predictive model selection

e Predictive model selection is most natural when the models are
used for making predictions

e Predictive model selection can be also useful when the models
are not directly used for prediction but for obtaining insights

e if there is no single independent parameter to look at
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Predictive model selection

e Predictive model selection is most natural when the models are
used for making predictions

e Predictive model selection can be also useful when the models
are not directly used for prediction but for obtaining insights

e if there is no single independent parameter to look at

e Student retention
- latent hierarchical linear vs.
- latent hierarchical linear + spline
is a good example where predictive model selection is useful
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Sometimes cross-validation is not needed

¢ In a simple nested case, often easier and more accurate to
analyze posterior distribution of an independent parameter
directly

- instead of comparing
Model 1: y ~ normal(«, o)

VS
Model 2: y ~ normal(« + Bx, o)
look at the posterior of 8 directly
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Sometimes cross-validation is not needed

¢ In a simple nested case, often easier and more accurate to
analyze posterior distribution of an independent parameter
directly

- instead of comparing
Model 1: y ~ normal(«, o)

VS
Model 2: y ~ normal(« + Bx, o)
look at the posterior of 8 directly

e Randomized control treatment studies is natural example

32/74



Common statistical tests as Bayesian models

®* Most common statistical tests are linear models

test model formula

t-test meanofdata y ~ 1

paired r-test mean of diffs  (y1 - y2) ~ 1
Pearson correl. linear model y ~ 1 + x
two-sample t-test groupmeans y ~ 1 + gid
ANOVA hier. model y ~ 1+ (1] gid)
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Common statistical tests as Bayesian models

®* Most common statistical tests are linear models

test model formula

t-test meanofdata y ~ 1

paired r-test mean of diffs  (y1 - y2) ~ 1
Pearson correl. linear model y ~ 1 + x
two-sample t-test groupmeans y ~ 1 + gid
ANOVA hier. model y ~ 1+ (1] gid)

® Possible to extend, e.g., with group specific variances and and
different distributions such ¢- or Poisson distribution

® and go beyond named tests
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Common statistical tests as Bayesian models

®* Most common statistical tests are linear models

test model formula

t-test meanofdata y ~ 1

paired r-test mean of diffs  (y1 - y2) ~ 1
Pearson correl. linear model y ~ 1 + x
two-sample t-test groupmeans y ~ 1 + gid
ANOVA hier. model y ~ 1+ (1] gid)

® Possible to extend, e.g., with group specific variances and and
different distributions such ¢- or Poisson distribution

® and go beyond named tests
® See longer list and illustrations (with lm) at
https://lindeloev.github.io/tests-as-linear/

and
with rstanarm in Regression and other stories
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Beta blockers

® An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

® A group of patients were randomly assigned to control and
treatment groups:

® out of 674 patients receiving the control, 39 died
® out of 680 receiving the treatment, 22 died
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Beta blockers

* An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

¢ A group of patients were randomly assigned to treatment and
control groups:

® out of 674 patients receiving the control, 39 died
® out of 680 receiving the treatment, 22 died

d_bin2 <- data.frame(N = c(674, 680),
y = c(39,22),
grp2 = c(9,1))
fitbl <- brm(y | trials(N) ~ 1, family = binomial(), data = d_bin2)

fithb2 <- brm(y | trials(N) ~ 1 + grp2, family = binomial(), data = d_bin2)

35/74



Beta blockers

* An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

¢ A group of patients were randomly assigned to treatment and
control groups:

® out of 674 patients receiving the control, 39 died
® out of 680 receiving the treatment, 22 died

d_bin2 <- data.frame(N = c(674, 680),
y = c¢(39,22),
grp2 = c(9,1))

fitbl <- brm(y | trials(N) ~ 1, family = binomial(), data = d_bin2)
fithb2 <- brm(y | trials(N) ~ 1 + grp2, family = binomial(), data = d_bin2)

> loo_compare(loo(fitb1),loo(fitb2))
elpd_diff se_diff

fith2 0.0 0.0

fitbl -1.6 2.3
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Posterior inference

® |nstead of model selection, report full posterior and
® compare to expert information
¢ combine with utility/cost function

0.4 0.6 0.8 1.0 1.2 14

oddsratio
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Posterior inference

® |nstead of model selection, report full posterior
e for continuous posterior there is zero probability that e.g.
treatment effect is exactly zero

p(odds=1)=0
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oddsratio
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Posterior inference

® |nstead of model selection, report full posterior
e for continuous posterior we could report the probability that we
know the sign of the effect

p(odds < 1) =0.99

0.4 0.6 0.8 1.0 1.2 14

oddsratio
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Bayesian hypothesis testing

® Sometimes people want to make a dichotomous choice

® model selection
® hypothesis testing
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Bayesian hypothesis testing

e Sometimes people want to make a dichotomous choice
® model selection
® hypothesis testing

® For example, need to make a decision whether continue with
bigger clinical trials or give permission to sell a drug

¢ the first decision requires estimates of trial costs and sales
profits, too

¢ the second decision is based on safety

® more abiut decision analysis next week
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Bayesian hypothesis testing

e Sometimes people want to make a dichotomous choice
® model selection
® hypothesis testing
® For example, need to make a decision whether continue with
bigger clinical trials or give permission to sell a drug

¢ the first decision requires estimates of trial costs and sales
profits, too

¢ the second decision is based on safety

® more abiut decision analysis next week

* Now we look at idealized hypothesis testing
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Bayesian hypothesis testing

® |nstead of model selection, report full posterior and
e for continuous posterior some people compare whether posterior
interval includes null case

95% CI = [0.31, 0.93]

-

0.4 0.6 0.8 1.0 1.2 14

oddsratio
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Bayesian hypothesis testing

e Equivalence testing (region of practical equivalence)
® what is the probability that the effect is closer than € to null,
where € is based on what is practically useful effect size

p(odds not in [0.95,1.05]) = 0.99

0.4 0.6 0.8 1.0 1.2 14

oddsratio
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Bayesian hypothesis testing

® |nstead of hypothesis testing, report full posterior

e for continuous posterior there is zero probability that e.g.
treatment effect is exactly zero

p(odds =1)=0 ! p(odds = 1) =0

0.4 0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4 16
oddsratio oddsratio
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Bayesian hypothesis testing

® |nstead of hypothesis testing, report full posterior

e for continuous posterior we could compute the probability that
we know the sign of the effect

p(odds < 1) = 0.99' p(odds < 1) = 0.57

0.4 0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4 16
oddsratio oddsratio
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Bayesian hypothesis testing

® |nstead of hypothesis testing, report full posterior

e for continuous posterior some people compare whether posterior
interval includes null case

95% CI =[0.31, 0.93] 95% Cl=[0.62, 1.5

T e e—————
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Bayesian hypothesis testing

® |nstead of hypothesis testing, report full posterior
® region of practical equivalence (ROPE)

(odds not in [0.95,1.05]) = 0.82

p(odds not in [0.95,1.05]) = 0.99
' '

0.4 0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4 16
oddsratio oddsratio
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Bayesian hypothesis testing

¢ Instead of hypothesis testing, report full posterior

e for continuous posterior there is zero probability that e.g.
treatment effect is exactly zero
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Bayesian hypothesis testing

® Instead of hypothesis testing, report full posterior

e for continuous posterior we could compute the probability that
we know the sign of the effect

p(odds < 1) =0.57 p(odds < 1) = 0.51
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Bayesian hypothesis testing

® Instead of hypothesis testing, report full posterior

e for continuous posterior some people compare whether posterior
interval includes null case

95% ClI = [0.62, 1.5

95% CI =[0.95, 1.05
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Bayesian hypothesis testing

® Instead of hypothesis testing, report full posterior
® region of practical equivalence (ROPE)

(odds not in [0.95,1.05]) = 0.82 p(odds not in [0.95,1.05]) = 0.03
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oddsratio oddsratio
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Bayesian hypothesis testing

® Instead of hypothesis testing, report full posterior
® region of practical equivalence (ROPE)

95% CI =[0.62, 1.5 95% CI = [0.95, 1.05

0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.4 0.8 1.2
oddsratio oddsratio
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Bayesian hypothesis testing

® Bayes factor
® null model has, e.g., the treatment effect fixed to 0
® assumes that there is non-zero probability that the treatment
effect can be exactly zero (point mass)
® requires posterior inference for the null model, too

BF based p(odds =1) =0.5

-  — — ——  ——
0.4 0.6 0.8 1.0 1.2

oddsratio
with bridgesampling package, see also BDA3 13.10
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Bayesian hypothesis testing

® Bayes factor
® null model has, e.g., the treatment effect fixed to 0
® assumes that there is non-zero probability that the treatment
effect can be exactly zero (point mass)
® requires posterior inference for the null model, too

sed p(odds = 1) =0.94

-0 0 ' q°T 00 0
0.4 0.6 0.8 1.0 1.2 14 1.6

oddsratio
with bridgesampling package, see also BDA3 13.10
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Bayesian hypothesis testing

® Bayes factor
® null model has, e.g., the treatment effect fixed to 0
® assumes that there is non-zero probability that the treatment
effect can be exactly zero (point mass)
® requires posterior inference for the null model, too

F based p(odds = 1) = 0.99

0.4 0.8 12 16
oddsratio
with bridgesampling package, see also BDA3 13.10
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Bayesian hypothesis testing

® Bayes factor
® sensitive to the prior choice even when the posterior is not

normal(0,3.5) normal(0,100)

BF based p(odds = 1) = 0.97

BF based p(odds = 1) = 0.5

0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2
oddsratio oddsratio

with bridgesampling package, see also BDA3 13.10
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Bayesian hypothesis testing

¢ Predictive performance

is there difference in predictive performance with, e.g., treatment
effect fixed to zero or unknown treatment effect
requires posterior inference for the null model or projection from

the full to null
looking at the posterior is better if parameters are independent
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Bayesian hypothesis testing

® Predictive performance
® is there difference in predictive performance with, e.g., treatment
effect fixed to zero or unknown treatment effect
® requires posterior inference for the null model or projection from
the full to null
® looking at the posterior is better if parameters are independent

In the beta blockers example

® Leave-one-person-out works, but is less efficient than looking at
the posterior (see
https://users.aalto.fi/~ave/modelselection/betablockers.html)

> loo_compare(loo(fitb1),loo(fith2))
elpd_diff se_diff

fitb2 0.0 0.0

fitb1 -1.6 2.3
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Bayesian hypothesis testing

® Predictive performance
® is there difference in predictive performance with, e.g., treatment
effect fixed to zero or unknown treatment effect
® requires posterior inference for the null model or projection from
the full to null
® looking at the posterior is better if parameters are independent

In the beta blockers example

® Leave-one-person-out works, but is less efficient than looking at
the posterior (see
https://users.aalto.fi/~ave/modelselection/betablockers.html)

> loo_compare(loo(fitb1),loo(fith2))
elpd_diff se_diff

fitb2 0.0 0.0

fitb1 -1.6 2.3

¢ For another similar, but more elaborate example, see https:
/lusers.aalto.fi/~ave/casestudies/Nabiximols/nabiximols.htmi 4574


https://users.aalto.fi/~ave/modelselection/betablockers.html
https://users.aalto.fi/~ave/casestudies/Nabiximols/nabiximols.html
https://users.aalto.fi/~ave/casestudies/Nabiximols/nabiximols.html

Bodyfat: many predictors

® Predict bodyfat percentage
® The reference value (siri) is obtained by immersing person in

water. n = 251.
* Which measurements to use in the future?
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Bodyfat: many predictors

® Predict bodyfat percentage

® The reference value (siri) is obtained by immersing person in

water. n = 251.

* Which measurements to use in the future?

@
Siri @

age
weight
height
neck
chest
abdomen
hip

thigh
knee
ankle
biceps
forearm
wrist

age
® | weight

height

®  neck
®  chest

® abdomen
® hip

®  thigh

®  knee
ankle

® | biceps
forearm
wrist

°
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Prediction

e Goal: prediction
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Prediction

e Goal: prediction
e Use all the predictors and sensible prior
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Prediction

e Goal: prediction
e Use all the predictors and sensible prior
® no model selection needed

47/74



Predictive performance based variable selection

° Goal:

® minimize future measurement cost
® easier explainability of the model
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Predictive performance based variable selection

° Goal:

® minimize future measurement cost
® easier explainability of the model

e Select the minimal number of covariates with similar predictive
performance as the full model
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Hypothesis testing and posterior dependencies

Looking at the marginal posterior p(8 < 0) can be misleading when
there are many parameters

Marginal posteriors of coefficients in bodyfat example

age 1
weight o
height 4

neck o
chest

abdomen +

hip -
thigh
knee -
ankle 1
biceps 1
forearm +
wrist 4

10
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Hypothesis testing and posterior dependencies

Looking at the marginal posterior(s) can be misleading when there
are many parameters

Bivariate marginal of weight and height
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Hypothesis testing and posterior dependencies

In bodyfat example, starting from full model

® BF in favor of removing weight (p=0.92)
¢ LOO in favor of removing weight (p=0.99)

In bodyfat example, starting from model y ~ abdomen

® BF in favor of adding weight (p=1.0)
e LOO in favor of adding weight (p=1.0)
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Predictive performance based variable selection

Projection predictive variable selection selects the minimal set of
variables with similar predictive performance as the full model

Predictive performance
Vertical bars indicate 68.3% confidence intervals
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Corresponding main diagonal element from CV ranking proportions matrix
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Projected posterior

Projection predictive variable selection selects the minimal set of
variables with similar predictive performance as the full model

abdomen -

weight o

More about projpred in the end of the course
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Model selection needed to avoid overfitting?

e Classic example is polynomial model with increasing number of
components

- overfits also with Bayesian inference and weak priors
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Model selection needed to avoid overfitting?

e Classic example is polynomial model with increasing number of
components
- overfits also with Bayesian inference and weak priors

Simulated data by Richard McElreath
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Model selection needed to avoid overfitting?

e Classic example is polynomial model with increasing number of
components
- overfits also with Bayesian inference and weak priors

Polynomial basis functions
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Model selection needed to avoid overfitting?

e Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions
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Model is not needed to avoid overfitting

e Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions

- more basis functions makes the approximation more
accurate, but doesn’t inflate the prior on function space

GP basis functions

-20
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N
5
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Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables,
100 observations
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Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables,
100 observations
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
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Prior on parameters vs predictions

N(0,3) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities

A weak prior on parameters can be a strong prior on predictions that
favors overfitting s8/74



Better priors

N(O, ) prior on each coefficient
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Better priors

N(O,#) prior on each coefficient
30 variables

0.00 0.25 0.50 0.75 1.00
Predictive probabilities

Prior on predictions (almost) fixed when the model gets bigger
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Better priors, no overfitting

logistic regression: 30 completely irrelevant variables,
100 observations, N(O,\/lﬁ) prior

_40,
O -60 within
@) ﬂ
O
(n L eee—
(@) test set
S -801

~100 1

0 10 20 30

Number of covariates

60/74



Better priors, no overfitting

logistic regression: 30 completely irrelevant variables,
100 observations, regularized horseshoe prior
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Many weak effects, wide prior on parameters

logistic regression: 30 weakly relevant variables,
100 observations, N(0,3) prior
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Many weak effects, better prior

logistic regression: 30 weakly relevant variables,
100 observations, N(O,\/lﬁ) prior

_40,
within

O -60 ,/_/__JN
o test set
O )
)
o
S -804

—-100 A

0 10 20 30

Number of covariates

62/74



Correlating variables, wide prior on parameters

logistic regression: 30 correlating relevant variables,
100 observations, N(0,3) prior
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Correlating variables, better prior

logistic regression: 30 correlating relevant variables,
100 observations N(0,--) prior
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Implied prior on R?

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Wide prior on coefficients favors overfitting

Prior
0 0.25 05 0.75 1
Posterior
0 0.25 05 0.75 1

Bayesian R"2
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Implied prior on R?

Regression and Other Stories, Section 12.7 Models for regression
coefficients:

Scaled prior on coefficients

Prior
0 0.25 0.5 0.75 1
Posterior
0 0.25 05 0.75 1

Bayesian R"2
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Implied prior on R?

Regression and Other Stories, Section 12.7 Models for regression

coefficients:

Regularized horseshoe prior on coefficients

Prior
0 0.25 05 0.75 1
Posterior
0 0.25 05 0.75 1

Bayesian R"2
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Better priors

For example:

® scaled: many weak effects

® regularized horseshoe, R2-D2: only some relevant
R2-D2: defined directly for R?

PCA-type: highly correlating variables
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p>n

® With good priors, possible to have more variables than
observations

® e.g. p =22283,n = 85 demonstrated by Piironen, Paasiniemi,
Vehtari (2020)
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Variable selection

Variable selection

1. is not needed to avoid overfitting
2. can be used to reduce costs and improve explainability
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Model selection can overfit

e Selection induced bias in cross-validation

- same data is used to assess the performance and make
the selection

- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)
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Model selection can overfit

e Selection induced bias in cross-validation

- same data is used to assess the performance and make
the selection

- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)

e Performance of the selection process itself can be assessed
using two level cross-validation, but it does not help choosing
better models

e Bigger problem if there is a large number of models as in
covariate selection
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Model selection can overfit

® Variable selection with forward selection

e start with null model
® add the variable improving the predictive performance most
® add the next variable improving... and so on
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Model selection can overfit

® Variable selection with forward selection
® start with null model

® add the variable improving the predictive performance most
® add the next variable improving... and so on
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Model selection can overfit

Wide normal prior
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Model selection can overfit

R2D2 prior reduces overfit in model selection
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Model selection can overfit

R2D2 prior reduces overfit in model selection
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Reminder: variable selection is not needed with good priors to get

good predictive performance, but may be useful for other purposes
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Model averaging

e Prefer continuous model expansion

72/74
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Model averaging

e Prefer continuous model expansion

¢ If needed integrate over the model space = model averaging
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Model averaging

e Prefer continuous model expansion
¢ If needed integrate over the model space = model averaging

e Bayesian model averaging is just the usual integration over
unknowns
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Model averaging

e Prefer continuous model expansion
¢ If needed integrate over the model space = model averaging

e Bayesian model averaging is just the usual integration over
unknowns

e Bayesian stacking may work better than BMA in case of
misspecified models or small data
- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking
to average Bayesian predictive distributions (with
discussion). Bayesian Analysis, 13(3):917-1003
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Cross-validation and model selection

e Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear
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Cross-validation and model selection

e Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear

e Be careful if using cross-validation to choose from a large set of
models

- selection process can lead to severe overfitting

e Overfitting in selection process is not unique for cross-validation
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Take-home messages

e |t's good to think predictions of observables, because
observables are the only ones we can observe

e Cross-validation can simulate predicting and observing new
data

e Cross-validation is good if you don’t trust your model

e Different variants of cross-validation are useful in different
scenarios

e Cross-validation has high variance, and if you trust your model
you can beat cross-validation in accuracy
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