Outline

Last week

- What is cross-validation
- LOO-PIT checking
- Fast cross-validation (PSIS and K-fold)
- When is cross-validation applicable?

This week

- LOO model comparison and selection (elpd_diff, se)
- Related methods (WAIC, *IC, BF)
- Hypothesis testing
- Potential overfitting
- Model expansion and averaging

Student retention - Posterior predictive distributions

with tidybayes
Latent hierarchical linear model

Latent hierarchical linear model + spline

2021
2022
-

Student retention - Marginal PPC

pp_check(fit, ndraws=100)
Latent hierarchical linear model

Latent hierarchical linear model + spline

Student retention - LOO intervals

LOO predictive intervals - latent hierarchical linear

LOO predictive intervals - latent hierarchical linear + spline

Student retention - LOO-PIT checking

pp_check(fit, type = "loo_pit_qq", ndraws=4000)
LOO-PIT check - latent hierarchical linear

LOO-PIT check - latent hierarchical linear + spline

Student retention $-R^{2}$

Latent hierarchical linear vs. latent hierarchical linear + spline
> loo_R2(fit4) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5
$\begin{array}{llllll}R 2 & 0.92 & 0.02 & 0.88 & 0.95\end{array}$
> loo_R2(fit6) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5
$\begin{array}{llllll}R 2 & 0.97 & 0.01 & 0.95 & 0.98\end{array}$
R^{2} measures the goodness of the mean of the predictive distribution

Gelman, Goodrich, Gabry, and Vehtari (2019). R-squared for Bayesian regression models. The American Statistician, 73(3):307-309.

Student retention - log score - elpd

- information theoretical goodness of the whole distribution
- elpd = expected log predictive density (probability)
- elpd_loo = estimated with LOO predictive densities / probs $\sum_{n=1}^{N} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)$

Student retention - log score - elpd

- information theoretical goodness of the whole distribution
- elpd = expected log predictive density (probability)
- elpd_loo = estimated with LOO predictive densities / probs $\sum_{n=1}^{N} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)$

LOO predictive intervals - latent hierarchical linear + spline

Student retention - log score - elpd

- information theoretical goodness of the whole distribution
- elpd = expected log predictive density (probability)
- elpd_loo = estimated with LOO predictive densities / probs $\sum_{n=1}^{N} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)$

LOO predictive intervals - latent hierarchical linear + spline

$$
\begin{array}{r}
-8.4-5.6-2.9-2.9-2.8-3.0-4.0-3.2-3.9-3.2-3.4-3.2-2.9-3.9-3.4-3.4-3.2-2.7-2.8-3.1 \\
-2.5-2.8-2.9-3.4-5.4-3.7-3.1-3.3-3.5-3.2-3.5-3.5-6.6-3.8-3.7-3.4-2.5-2.8-2.9-3.3
\end{array}
$$

Student retention - log score - elpd

- information theoretical goodness of the whole distribution
- elpd = expected log predictive density (probability)
- elpd_loo = estimated with LOO predictive densities / probs $\sum_{n=1}^{N} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)$

LOO predictive intervals - latent hierarchical linear + spline

$$
\begin{aligned}
& \quad-8.4-5.6-2.9-2.9-2.8-3.0-4.0-3.2-3.9-3.2-3.4-3.2-2.9-3.9-3.4-3.4-3.2-2.7-2.8-3.1 \\
& \quad-2.5-2.8-2.9-3.4-5.4-3.7-3.1-3.3-3.5-3.2-3.5-3.5-6.6-3.8-3.7-3.4-2.5-2.8-2.9-3.3 \\
& \Sigma=-141.7
\end{aligned}
$$

Student retention - elpd_loo

Latent hierarchical linear + spline
$>$ loo(fit6)
Computed from 4000 by 40 log-likelihood matrix

	Estimate	SE
elpd_loo	-141.7	7.2
p_loo	10.9	2.5

Student retention - elpd_loo

Latent hierarchical linear + spline
> loo(fit6)
Computed from 4000 by 40 log-likelihood matrix

	Estimate	SE
elpd_loo	-141.7	7.2
p_loo	10.9	2.5

Latent hierarchical linear
> loo(fit4)
Computed from 4000 by 40 log-likelihood matrix

	Estimate	SE
elpd_loo	-184.3	17.3
p_loo	24.3	5.8

Student retention - log score - elpd

LOO predictive intervals - latent hierarchical linear

LOO predictive intervals - latent hierarchical linear + spline

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

mean ≈ 1.07
$s d \approx 2.26$
fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

mean ≈ 1.07
$\mathrm{sd} \approx 2.26$
$\mathrm{SE}=\mathrm{sd} / \sqrt{40} \approx 0.36$
fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

mean ≈ 1.07
sd ≈ 2.26
$\mathrm{SE}=\mathrm{sd} / \sqrt{40} \approx 0.36$
sum ≈ 42.6
fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear (fit4) vs latent hierarchical linear + spline (fit6)

fit6 vs fit4: pointwise elpd_loo difference

Student retention - elpd_loo

Latent hierarchical linear + spline
>100 (fit6)

	Estimate	SE
elpd_loo	-141.7	7.2
p_loo	10.9	2.5

Latent hierarchical linear
> 100 (fit4)

	Estimate	SE
elpd_loo	-184.3	17.3
p_loo	23.8	5.7

> loo_compare(loo(fit4), loo(fit6)) elpd_diff se_diff
$\begin{array}{lll}\text { fit6 } & 0.0 & 0.0\end{array}$
fit4 -42.6 14.3

LOO difference uncertainty estimate (SE) reliability

1. The models make very similar predictions
2. The models are misspecified with outliers in the data
3. The number of observations is small

LOO difference uncertainty estimate (SE) reliability

1. The models make very similar predictions

- if |elpd_loo| < 4, SE is not reliable, but the difference is small anyway
- selecting a "wrong" model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data
3. The number of observations is small

LOO difference uncertainty estimate (SE) reliability

1. The models make very similar predictions

- if |elpd_loo| < 4, SE is not reliable, but the difference is small anyway
- selecting a "wrong" model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data

- in nested case, the bias favors the simpler model
- model checking and model extension to avoid misspecified models (Bayesian workflow)

3. The number of observations is small

LOO difference uncertainty estimate (SE) reliability

1. The models make very similar predictions

- if |elpd_loo| < 4, SE is not reliable, but the difference is small anyway
- selecting a "wrong" model has small cost
- in nested case, the skewness favors the simpler model

2. The models are misspecified with outliers in the data

- in nested case, the bias favors the simpler model
- model checking and model extension to avoid misspecified models (Bayesian workflow)

3. The number of observations is small

- in nested case the skewness favors the simpler model
- any inference with small n is difficult
- if |elpd_loo >4, model is well specified, and $n>100$ then the normal approximation is good

Log score and elpd_loo

- Log score is not easily interpretable
- but is information theoretically good utility for the goodness of the whole distribution
- and thus is useful in model comparison

Log score and elpd_loo

- Interpretation in discrete case
- log probability

Log score and elpd_loo

- Interpretation in discrete case
- log probability
- For example
- $\frac{1}{N} \sum_{n=1}^{N} \exp \left(\mathrm{elpd}_{\text {loo }, n}\right) \approx 4 \%$ probability that we predict the observed value

Log score and elpd_loo

- Interpretation in discrete case
- log probability
- For example
- $\frac{1}{N} \sum_{n=1}^{N} \exp \left(\operatorname{elpd}_{\text {loo }, n}\right) \approx 4 \%$ probability that we predict the observed value
- compare to guessing uniformly from the data range $[121,310]$ having $1 /(310-121+1) \approx 0.5 \%$ probability

Log score and elpd_loo

- Interpretation in discrete case
- log probability
- For example
- $\frac{1}{N} \sum_{n=1}^{N} \exp \left(\operatorname{elpd}_{\text {loo }, n}\right) \approx 4 \%$ probability that we predict the observed value
- compare to guessing uniformly from the data range $[121,310]$ having $1 /(310-121+1) \approx 0.5 \%$ probability (log score -210)

Log score and elpd_loo

- Interpretation in discrete case
- log probability
- For example
- $\frac{1}{N} \sum_{n=1}^{N} \exp \left(\right.$ elpd $\left._{\text {loo }, n}\right) \approx 4 \%$ probability that we predict the observed value
- compare to guessing uniformly from the data range $[121,310]$ having $1 /(310-121+1) \approx 0.5 \%$ probability (log score -210)
- Interpretation in continuous case
- can be compared to a simple reference distribution

Student retention - loo computation

PSIS-LOO

PSIS-LOO + moment matching
> ...(fit4, 'loo', moment_match=TRUE, reloo=TRUE, overwrite=TRUE) Pareto k diagnostic values:

$(-\operatorname{lnf}, 0.5]$	(good)	30	75.0%	165
$(0.5,0.7]$	(ok)	10	25.0%	77
$(0.7,1]$	(bad)	0	0.0%	$\langle N A\rangle$
$(1$, Inf)	(very bad)	0	0.0%	$\langle N A\rangle$

Paananen, Piironen, Bürkner, and Vehtari (2021). Implicitly adaptive importance sampling. Statistics and Computing, 31, 16.

Student retention－loo computation

PSIS－LOO

＞fit6＜－add＿criterion（fit6，＇loo＇）
Pareto k diagnostic values：

（－Inf， 0.5$]$	（good）	34	85.0%	558
$(0.5,0.7]$	（ok）	5	12.5%	226
$(0.7,1]$	（bad）	1	2.5%	215
$(1$, Inf）	（very bad）	0	0.0%	＜NA〉

PSIS－LOO＋moment matching

```
> ...(fit6, 'loo', moment_match=TRUE, overwrite=TRUE)
Pareto k diagnostic values:
\begin{tabular}{rlrrl}
\((-\operatorname{Inf}, 0.5]\) & （good） & 34 & \(85.0 \%\) & 558 \\
\((0.5,0.7]\) & （ok） & 6 & \(15.0 \%\) & 226 \\
\((0.7,1]\) & （bad） & 0 & \(0.0 \%\) & ＜NA〉 \\
\((1\), Inf） & （very bad） & 0 & \(0.0 \%\) & ＜NA〉
\end{tabular}
```

Paananen，Piironen，Bürkner，and Vehtari（2021）．Implicitly adaptive importance sampling．Statistics and Computing，31， 16.

looic?

```
loo(fit6)
Computed from 4000 by 40 log-likelihood matrix
\begin{tabular}{lrr} 
& Estimate & SE \\
elpd_loo & -141.7 & 7.2 \\
p_loo & 10.9 & 2.5 \\
looic & 283.4 & 14.4
\end{tabular}
Monte Carlo SE of elpd_loo is 0.1.
```

- loo output shows also looic
- for historical non-Bayesian reasons it's -2 * elpd_loo
- connection to deviance and information criteria
- you can just ignore it

Information criteria

Information criteria estimate predictive performance, too

- AIC uses maximum likelihood estimate for prediction

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

Information criteria

Information criteria estimate predictive performance, too

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

Information criteria

Information criteria estimate predictive performance, too

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is a simple approximation for marginal likelihood

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

Information criteria

Information criteria estimate predictive performance, too

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is a simple approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

Information criteria

Information criteria estimate predictive performance, too

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is a simple approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...
- WAIC is the only Bayesian information criterion

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

WAIC vs PSIS-LOO

- WAIC has the same target and assumptions as LOO

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413-1432
Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

WAIC vs PSIS-LOO

- WAIC has the same target and assumptions as LOO
- PSIS-LOO is more accurate

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413-1432
Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

WAIC vs PSIS-LOO

- WAIC has the same target and assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics

Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5):1413-1432
Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

WAIC vs PSIS-LOO

- WAIC has the same target and assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- moment matching and reloo are natural improvements for PSIS-LOO

```
Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413-1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
```


WAIC vs PSIS-LOO

- WAIC has the same target and assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- moment matching and reloo are natural improvements for PSIS-LOO
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead

```
Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413-1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
```


WAIC vs PSIS-LOO

- WAIC has the same target and assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- moment matching and reloo are natural improvements for PSIS-LOO
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead
- Multiplying by -2 doesn't give any benefit (Watanabe didn't multiply by -2)

```
Vehtari, Gelman and Gabry (2017). Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Statistics and Computing,
27(5):1413-1432
Vehtari & Ojanen (2012). A survey of Bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142-228.
```


Marginal likelihood and Bayes factor

Bayes Factor $\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}$
Marginal likelihood $p\left(y \mid M_{1}\right)=\int p\left(y \mid \theta, M_{1}\right) p\left(\theta \mid M_{1}\right) d \theta$

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

Marginal likelihood and Bayes factor

Bayes Factor $\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}$
Marginal likelihood $p\left(y \mid M_{1}\right)=\int p\left(y \mid \theta, M_{1}\right) p\left(\theta \mid M_{1}\right) d \theta$
Marginal likelihood with chain rule:
$p\left(y \mid M_{1}\right)=p\left(y_{1} \mid M_{1}\right) p\left(y_{2} \mid y_{1}, M_{1}\right), \ldots, p\left(y_{n} \mid y_{1}, \ldots, y_{n-1}, M_{1}\right)$

Vehtari \& Ojanen (2012). A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Surveys, 6:142-228.

Marginal likelihood and Bayes factor

Bayes Factor $\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}$
Marginal likelihood $p\left(y \mid M_{1}\right)=\int p\left(y \mid \theta, M_{1}\right) p\left(\theta \mid M_{1}\right) d \theta$
Marginal likelihood with chain rule:
$p\left(y \mid M_{1}\right)=p\left(y_{1} \mid M_{1}\right) p\left(y_{2} \mid y_{1}, M_{1}\right), \ldots, p\left(y_{n} \mid y_{1}, \ldots, y_{n-1}, M_{1}\right)$
where

$$
\begin{aligned}
& p\left(y_{1} \mid M_{1}\right)=\int p\left(y_{1} \mid \theta, M_{1}\right) p\left(\theta \mid M_{1}\right) d \theta \\
& p\left(y_{2} \mid y_{1}, M_{1}\right)=\int p\left(y_{2} \mid \theta, M_{1}\right) p\left(\theta \mid y_{1}, M_{1}\right) d \theta
\end{aligned}
$$

$$
p\left(y_{n} \mid y_{1}, \ldots, y_{n-1}, M_{1}\right)=\int p\left(y_{n} \mid \theta, M_{1}\right) p\left(\theta \mid y_{1}, \ldots, y_{n-1}, M_{1}\right) d \theta
$$

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
- which makes it very sensitive to prior

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically

Marginal likelihood / Bayes factor

- Like leave-future-out 1-step-ahead cross-validation but starting with 0 observations
- which makes it very sensitive to prior and
- unstable in case of misspecified models also asymptotically
- Oelrich, Ding, Magnusson, Vehtari, and Villani (2020). When are Bayesian model probabilities overconfident? arXiv:2003.04026.

Predictive model selection

- Student retention
- latent hierarchical linear vs.
- latent hierarchical linear + spline
is a good example where predictive model selection is useful

Sometimes cross-validation is not needed

- In a simple nested case, often easier and more accurate to analyze posterior distribution of more complex model directly
- instead of comparing

Model 1: $y \sim \operatorname{normal}(\alpha, \sigma)$
vs
Model 2: $y \sim \operatorname{normal}(\alpha+\beta x, \sigma)$
look at the posterior of β directly

Common statistical tests as Bayesian models

- Most common statistical tests are linear models

```
t-test
paired t-test
Pearson correl. linear model stan_glm(y ~ 1 + x)
two-sample t-test
ANOVA
mean of data stan_glm(y ~ 1)
mean of diffs stan_glm((y1 - y2) ~ 1)
group means stan_glm(y ~ 1 + gid)
hier. model stan_glm(y ~ 1 + (1 | gid))
```


Common statistical tests as Bayesian models

- Most common statistical tests are linear models

```
t-test
paired t-test
Pearson correl.
two-sample t-test
ANOVA
mean of data
    mean of diffs stan_glm((y1 - y2) ~ 1)
    linear model stan_glm(y ~ 1 + x)
    group means stan_glm(y ~ 1 + gid)
    hier. model stan_glm(y ~ 1 + (1 | gid))
```

- Possible to extend, e.g., with group specific variances and and different distributions such t - or Poisson distribution
- and go beyond named tests

Common statistical tests as Bayesian models

- Most common statistical tests are linear models

t-test	mean of data	stan_glm(y ~ 1)
paired t-test	mean of diffs	stan_glm($(\mathrm{y} 1-\mathrm{y} 2) \sim 1)$
Pearson correl.	linear model	stan_glm(y ~ $1+x)$
two-sample t-test	group means	stan_glm(y ~ 1 + gid)
ANOVA	hier. model	stan_glm(y ~ 1 + (1 \| gid))

- Possible to extend, e.g., with group specific variances and and different distributions such t - or Poisson distribution
- and go beyond named tests
- See longer list and illustrations (with lm) at https://lindeloev.github.io/tests-as-linear/
and
with rstanarm in Regression and other stories

Beta blockers

- An experiment was performed to estimate the effect of beta-blockers on mortality of cardiac patients
- A group of patients were randomly assigned to treatment and control groups:
- out of 674 patients receiving the control, 39 died
- out of 680 receiving the treatment, 22 died

Beta blockers

- An experiment was performed to estimate the effect of beta-blockers on mortality of cardiac patients
- A group of patients were randomly assigned to treatment and control groups:
- out of 674 patients receiving the control, 39 died
- out of 680 receiving the treatment, 22 died

$$
\begin{aligned}
& \text { d_bin2 <- data.frame }(N=c(674,680), \\
& y=c(39,22), \\
&\operatorname{grp} 2=c(0,1))
\end{aligned}
$$

```
fitb1 <- brm(y | trials (N) ~ 1,
    family = binomial(),
    data = d_bin2)
```

fitb2 <- brm(y | trials (N) ~ 1 + grp2,
family = binomial (),
data = d_bin2)

Beta blockers

- An experiment was performed to estimate the effect of beta-blockers on mortality of cardiac patients
- A group of patients were randomly assigned to treatment and control groups:
- out of 674 patients receiving the control, 39 died
- out of 680 receiving the treatment, 22 died

```
d_bin2b <- data.frame \((y=c(r e p(1,39), \operatorname{rep}(0,674-39)\),
        rep \((1,22), \operatorname{rep}(0,680-22))\),
        \(\operatorname{grp} 2=c(\operatorname{rep}(0,674), \operatorname{rep}(1,680)))\)
fitb1 <- brm(y ~ 1, family = bernoulli(), data = d_bin2b)
fitb2 <- brm(y ~ \(1+\) grp2, family = bernoulli(), data = d_bin2b)
```


Beta blockers

- An experiment was performed to estimate the effect of beta-blockers on mortality of cardiac patients
- A group of patients were randomly assigned to treatment and control groups:
- out of 674 patients receiving the control, 39 died
- out of 680 receiving the treatment, 22 died

```
d_bin2b <- data.frame(y = c(rep (1,39), rep (0,674-39),
        rep(1,22), rep(0,680-22)),
        grp2 = c(rep(0, 674), rep(1, 680)))
fitb1 <- brm(y ~ 1, family = bernoulli(), data = d_bin2b)
fitb2 <- brm(y ~ 1 + grp2, family = bernoulli(), data = d_bin2b)
> loo_compare(loo(fitb 1),loo(fitb 2))
        elpd_diff se_diff
fitb2 0.0 0.0
fitb1 -1.6 2.3
```


Bayesian inference

- Instead of model selection, report full posterior and
- compare to expert information
- combine with utility/cost function

Bayesian inference

- Instead of model selection, report full posterior
- for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

Bayesian inference

- Instead of model selection, report full posterior
- for continuous posterior we could report the probability that we know the sign of the effect

Bayesian hypothesis testing

- Sometimes people want to make a dichotomous choice
- model selection
- hypothesis testing

Bayesian hypothesis testing

- Instead of model selection, report full posterior and
- for continuous posterior some people compare whether posterior interval includes null case

Bayesian hypothesis testing

- Equivalence testing (region of practical equivalence)
- what is the probability that the effect is closer than ϵ to null, where ϵ is based on what is practically useful effect size

Bayesian hypothesis testing

- Equivalence testing (region of practical equivalence)
- some people combine posterior interval and region of practical equivalence

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- for continuous posterior we could compute the probability that we know the sign of the effect

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- for continuous posterior some people compare whether posterior interval includes null case

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- region of practical equivalence (ROPE)

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- region of practical equivalence (ROPE)

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- for continuous posterior there is zero probability that e.g. treatment effect is exactly zero

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- for continuous posterior we could compute the probability that we know the sign of the effect

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- for continuous posterior some people compare whether posterior interval includes null case

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- region of practical equivalence (ROPE)

Bayesian hypothesis testing

- Instead of hypothesis testing, report full posterior
- region of practical equivalence (ROPE)

Bayesian hypothesis testing

- Bayes factor
- null model has, e.g., the treatment effect fixed to 0
- assumes that there is non-zero probability that the treatment effect can be exactly zero (point mass)
- requires posterior inference for the null model, too

Bayesian hypothesis testing

- Bayes factor
- null model has, e.g., the treatment effect fixed to 0
- assumes that there is non-zero probability that the treatment effect can be exactly zero (point mass)
- requires posterior inference for the null model, too

Bayesian hypothesis testing

- Bayes factor
- null model has, e.g., the treatment effect fixed to 0
- assumes that there is non-zero probability that the treatment effect can be exactly zero (point mass)
- requires posterior inference for the null model, too

with bridgesampling package, see also BDA3 13.10

Bayesian hypothesis testing

- Bayes factor
- sensitive to the prior choice even when the posterior is not

with bridgesampling package, see also BDA3 13.10

Bayesian hypothesis testing

- Predictive performance
- is there difference in predictive performance with, e.g., treatment effect fixed to zero or unknown treatment effect
- requires posterior inference for the null model or projection from the full to null
- looking at the posterior is better if parameters are independent

Bayesian hypothesis testing

- Predictive performance
- is there difference in predictive performance with, e.g., treatment effect fixed to zero or unknown treatment effect
- requires posterior inference for the null model or projection from the full to null
- looking at the posterior is better if parameters are independent

In the beta blockers example

- Leave-one-person-out works, but is less efficient than looking at the posterior (see
https://users.aalto.fi/~ave/modelselection/betablockers.html)

```
> loo_compare(loo(fitb1),loo(fitb2))
    elpd_diff se_diff
fitb2 0.0 0.0
fitb1 -1.6 2.3
```


Bodyfat: many predictors

- Predict bodyfat percentage
- The reference value (siri) is obtained by immersing person in water. $n=251$.
- Which measurements to use in the future?

Bodyfat: many predictors

- Predict bodyfat percentage
- The reference value (siri) is obtained by immersing person in water. $n=251$.
- Which measurements to use in the future?

Prediction

- Goal: prediction

Prediction

- Goal: prediction
- Use all the predictors and sensible prior

Prediction

- Goal: prediction
- Use all the predictors and sensible prior
- no model selection needed

Predictive performance based variable selection

- Goal:
- minimize future measurement cost
- easier explainability of the model

Predictive performance based variable selection

- Goal:
- minimize future measurement cost
- easier explainability of the model
- Select the minimal number of covariates with similar predictive performance as the full model

Hypothesis testing and posterior dependencies

Looking at the marginal posterior $p(\beta<0)$ can be misleading when there are many parameters

Marginal posteriors of coefficients in bodyfat example

Hypothesis testing and posterior dependencies

Looking at the marginal posterior(s) can be misleading when there are many parameters

Bivariate marginal of weight and height

Hypothesis testing and posterior dependencies

In bodyfat example, starting from full model

- $B F$ in favor of removing weight $(p=0.92)$
- LOO in favor of removing weight ($\mathrm{p}=0.99$)

In bodyfat example, starting from model y ~ abdomen

- BF in favor of adding weight ($\mathrm{p}=1.0$)
- LOO in favor of adding weight ($p=1.0$)

Predictive performance based variable selection

Projection predictive variable selection selects the minimal set of variables with similar predictive performance as the full model

Projected posterior

Projection predictive variable selection selects the minimal set of variables with similar predictive performance as the full model

More about projpred in the end of the course

Model selection needed to avoid overfitting?

- Classic example is polynomial model with increasing number of components
- overfits also with Bayesian inference and weak priors

Model selection needed to avoid overfitting?

- Classic example is polynomial model with increasing number of components
- overfits also with Bayesian inference and weak priors

Simulated data by Richard McElreath

Model selection needed to avoid overfitting?

- Classic example is polynomial model with increasing number of components
- overfits also with Bayesian inference and weak priors

Polynomial basis functions

Model selection needed to avoid overfitting?

- Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions

Model selection needed to avoid overfitting?

- Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions
- more basis functions makes the approximation more accurate, but doesn't inflate the prior on function space

Model is not needed to avoid overfitting

- Gaussian process can be used as a prior on function space
- GP can be approximated with basis functions
- more basis functions makes the approximation more accurate, but doesn't inflate the prior on function space
GP basis functions

Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables, 100 observations

Model selection needed to avoid overfitting?

logistic regression: 30 completely irrelevant variables, 100 observations

Prior on parameters vs predictions

$N(0,3)$ prior on each coefficient

Prior on parameters vs predictions

$N(0,3)$ prior on each coefficient
1 variable

Prior on parameters vs predictions

$N(0,3)$ prior on each coefficient
2 variables

Prior on parameters vs predictions

$N(0,3)$ prior on each coefficient
3 variables

Prior on parameters vs predictions

$N(0,3)$ prior on each coefficient
30 variables

Prior on parameters vs predictions

$N(0,3)$ prior on each coefficient
30 variables

A weak prior on parameters can be a strong prior on predictions that favors overfitting

Better priors

$\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior on each coefficient

Better priors

$\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior on each coefficient
1 variable

Better priors

$\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior on each coefficient
2 variables

Better priors

$\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior on each coefficient
3 variables

Better priors

$\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior on each coefficient 30 variables

Better priors

$\mathrm{N}\left(0, \frac{1}{\sqrt{\bar{p}}}\right)$ prior on each coefficient
30 variables

Prior on predictions (almost) fixed when the model gets bigger

Better priors, no overfitting

logistic regression: 30 completely irrelevant variables, 100 observations, $\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior

Better priors, no overfitting

logistic regression: 30 completely irrelevant variables, 100 observations, regularized horseshoe prior

Many weak effects, wide prior on parameters

logistic regression: 30 weakly relevant variables, 100 observations, $\mathrm{N}(0,3)$ prior

Many weak effects, better prior

logistic regression: 30 weakly relevant variables, 100 observations, $\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior

Correlating variables, wide prior on parameters

logistic regression: 30 correlating relevant variables, 100 observations, $\mathrm{N}(0,3)$ prior

Correlating variables, better prior

logistic regression: 30 correlating relevant variables, 100 observations $\mathrm{N}\left(0, \frac{1}{\sqrt{p}}\right)$ prior

Implied prior on R^{2}

Regression and Other Stories, Section 12.7 Models for regression coefficients:

Wide prior on coefficients favors overfitting

Implied prior on R^{2}

Regression and Other Stories, Section 12.7 Models for regression coefficients:

Scaled prior on coefficients
Prior

Implied prior on R^{2}

Regression and Other Stories, Section 12.7 Models for regression coefficients:

Regularized horseshoe prior on coefficients

Better priors

For example:

- scaled: many weak effects
- regularized horseshoe, R2-D2: only some relevant
- R2-D2: defined directly for R^{2}
- PCA-type: highly correlating variables
- With good priors, possible to have more variables than observations
- e.g. $p=22283, n=85$ demonstrated by Piironen, Paasiniemi, Vehtari (2020)

Variable selection

Variable selection

1. is not needed to avoid overfitting
2. can be used to reduce costs and improve explainability

Model selection can overfit

- Selection induced bias in cross-validation
- same data is used to assess the performance and make the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)

Model selection can overfit

- Selection induced bias in cross-validation
- same data is used to assess the performance and make the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

Model selection can overfit

- Selection induced bias in cross-validation
- same data is used to assess the performance and make the selection
- the selected model fits more to the data
- the CV estimate for the selected model is biased
- recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

Model selection can overfit

- Variable selection with forward selection
- start with null model
- add the variable improving the predictive performance most
- add the next variable improving... and so on

Model selection can overfit

- Variable selection with forward selection
- start with null model
- add the variable improving the predictive performance most
- add the next variable improving... and so on

Model selection can overfit

Wide normal prior

Model selection can overfit

R2D2 prior reduces overfit in model selection

Model selection can overfit

R2D2 prior reduces overfit in model selection

Reminder: variable selection is not needed with good priors to get good predictive performance, but may be useful for other purposes

Model averaging

- Prefer continuous model expansion

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging
- Bayesian model averaging is just the usual integration over unknowns

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging
- Bayesian model averaging is just the usual integration over unknowns
- Bayesian stacking may work better than BMA in case of misspecified models or small data
- Yao, Vehtari, Simpson, and Gelman (2018). Using stacking to average Bayesian predictive distributions (with discussion). Bayesian Analysis, 13(3):917-1003

Cross-validation and model selection

- Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear

Cross-validation and model selection

- Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear
- Be careful if using cross-validation to choose from a large set of models
- selection process can lead to severe overfitting

Cross-validation and model selection

- Cross-validation can be used for model selection if
- small number of models
- the difference between models is clear
- Be careful if using cross-validation to choose from a large set of models
- selection process can lead to severe overfitting
- Overfitting in selection process is not unique for cross-validation

Take-home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take-home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take-home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take-home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

Take-home messages

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

