Predicting concrete quality

- How accurate the model is?
- Is it better than predicting with random guess?
- Is it possible that the model has overfitted?
- Is model B better than model A? (next week)

Outline

- What is cross-validation
 - Leave-one-out cross-validation (elpd_loo, p_loo)
 - Uncertainty in LOO (SE)
- Fast cross-validation
 - PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
 - K-fold cross-validation
- When is cross-validation applicable?
 - data generating mechanisms and prediction tasks
 - leave-many-out cross-validation

Next week

- Model comparison and selection (elpd_diff, se)
- Related methods (WAIC, *IC, BF)
- Model averaging
- Potential overfitting in model selection

Chapter 7

- 7.1 Measures of predictive accuracy
- 7.2 Information criteria and cross-validation
 - Instead of 7.2, read:
 Vehtari, A., Gelman, A., Gabry, J. (2017). Practical
 Bayesian model evaluation using leave-one-out
 cross-validation and WAIC. Statistics and Computing.
 27(5):1413–1432. preprint at arxiv.org/abs/1507.04544.
 - See also https://users.aalto.fi/~ave/modelselection/CV-FAQ.html

Next week

- 7.3 Model comparison based on predictive performance
- 7.4 Model comparison using Bayes factors
- 7.5 Continuous model expansion / sensitivity analysis
- 7.5 Example (may be skipped)

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - approximates the external validation

- We need to choose the utility/cost function
 - more about these in lecture 10
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.

- We need to choose the utility/cost function
 - more about these in lecture 10
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.
- If are interested overall in the goodness of the predictive distribution, or we don't know (yet) the application specific utility, then good information theoretically justified choice is log-score

$$\log p(y^{\mathsf{rep}} \mid y, M),$$

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

Pareto k diagnostic values:

```
Count Pct. Min. n_eff
(-Inf, 0.5] (good) 18 90.0% 899
(0.5, 0.7] (ok) 2 10.0% 459
(0.7, 1] (bad) 0 0.0% <NA>
(1, Inf) (very bad) 0 0.0% <NA>
```

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Model comparison:

(negative 'elpd_diff' favors 1st model, positive favors 2nd)

$$\begin{array}{ccc} \text{elpd_diff} & \text{se} \\ -0.2 & 0.1 \end{array}$$

Posterior mean, alternative data realisation

Posterior predictive distribution

$$p(\tilde{y} \mid \tilde{x} = 18, x, y) = \int p(\tilde{y} \mid \tilde{x} = 18, \theta) p(\theta \mid x, y) d\theta$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18})]$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R^2 , 90% error

Leave-one-out residual

$$y_{18} - E[p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R^2 , 90% error

See LOO-R² at avehtari.github.io/bayes_R2/bayes_R2.html

Χ

Leave-one-out predictive distribution

 $p(\tilde{y} \mid \tilde{x} = 18, x_{-18}, y_{-18}) = \int p(\tilde{y} \mid \tilde{x} = 18, \theta) p(\theta \mid x_{-18}, y_{-18}) d\theta$

Posterior predictive density

$$p(\tilde{y} = y_{18} \mid \tilde{x} = 18, x, y) \approx 0.07$$

Leave-one-out predictive density

$$p(\tilde{y} = y_{18} \mid \tilde{x} = 18, x, y) \approx 0.07$$

 $p(\tilde{y} = y_{18} \mid \tilde{x} = 18, x_{-18}, y_{-18}) \approx 0.03$

$$p(y_i \mid x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$$

 $\log p(y_i \mid x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$

 $\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$

elpd_loo = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$

elpd_loo = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$ an estimate of log posterior pred. density for new data

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x, y) \approx -26.8$

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd = $\sum_{i=1}^{20} \log p(y_i \mid x_i, x, y) \approx -26.8$
p_loo = lpd - elpd_loo ≈ 2.7

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

p_loo = lpd - elpd_loo ≈ 2.7
asymptotically approaches p in case of regular faithful model

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

p_loo = lpd - elpd_loo ≈ 2.7

asymptotically approaches p in case of regular faithful model

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i \mid x_i, x_{-i}, y_{-i})$) · $\sqrt{20} \approx 3.3$

see Vehtari, Gelman & Gabry (2017a) and Vehtari & Ojanen (2012) for more

loo package

Computed from 4000 by 20 log-likelihood matrix

Estimate SE elpd loo -29.5 3.3 p_loo 2.7 1.0

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:					
			Count	Pct.	Min. n_eff
(-Inf,		(good)	18	90.0%	899
(0.5,	0.7]	(ok)	2	10.0%	459
(0.7	7, 1]		0	0.0%	<na></na>
(1,	Inf)	(very bad	d) 0	0.0%	<na></na>

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Helicopter flight time – elpd

Computed from 4000 by 145 log-likelihood matrix

```
Estimate SE
elpd_loo -52.9 10.1
p_loo 9.0 1.3
looic 105.8 20.1
-----
Monte Carlo SE of elpd loo is 0.1.
```

All Pareto k estimates are good (k < 0.5). See help('pareto-k-diagnostic') for details.

Helicopter flight time – R^2

Student retention – R^2

Student retention

Posterior predictive intervals

LOO predictive intervals

Student retention $-R^2$

Latent hierarchical linear vs. latent hierarchical linear + spline

Student retention – elpd (log score)

Latent hierarchical linear vs. latent hierarchical linear + spline

Next week more about this

LOO-PIT predictive checking

LOO probability integral transform (LOO-PIT)

$$p_i = p(y_i^{\text{rep}} \le y_i | y_{-i})$$

• If $p(\tilde{y}_i|y_{-i})$ is well calibrated, distribution of p_i 's would be uniform between 0 and 1

Student retention – LOO-PIT checking

pp_check(fit, type = "loo_pit_qq", ndraws=4000)

Latent hierarchical linear – LOO predictive intervals

Student retention – LOO-PIT checking

pp_check(fit, type = "loo_pit_qq", ndraws=4000)

Latent hierarchical linear + spline - LOO predictive intervals/

Brute-force LOO

- Re-run MCMC n times to sample from $p(\theta \mid x_{-i}, y_{-i})$
 - can take a lot of time

Brute-force LOO

- Re-run MCMC n times to sample from $p(\theta \mid x_{-i}, y_{-i})$
 - can take a lot of time
 - or high parallelization
 Cooper, Vehtari, Forbes, Kennedy, and Simpson (2023).
 Bayesian cross-validation by parallel Markov chain Monte Carlo. arXiv:2310.07002.

Fast cross-validation

- Pareto smoothed importance sampling LOO (PSIS-LOO)
- K-fold cross-validation

• We want to compute $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$

- We want to compute $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$

- We want to compute $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_i^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_i \mid x_i, \theta^{(s)})}$$

- We want to compute $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_{i}^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_{i} \mid x_{i}, \theta^{(s)})}$$
$$\tilde{w}_{i}^{(s)} = \frac{w_{i}^{(s)}}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

Posterior draws 7.5 > 5.0 2.5 0.0 10 15 20 5 Χ

$$\theta^{(s)} \sim p(\theta \mid x, y)$$

Posterior predictive distribution

$$\theta^{(s)} \sim p(\theta \mid x, y), \quad p(\tilde{y} \mid \tilde{x}, x, y) \approx \tfrac{1}{S} \sum_{s=1}^S p(\tilde{y} \mid \tilde{x}, \theta^{(s)})$$

Posterior predictive distribution

$$\theta^{(s)} \sim p(\theta \mid x, y), \quad p(\tilde{y} \mid \tilde{x}, x, y) \approx \tfrac{1}{S} \sum_{s=1}^S p(\tilde{y} \mid \tilde{x}, \theta^{(s)})$$

PSIS-LOO weighted draws

$$\theta^{(s)} \sim p(\theta \mid x, y), \quad w_i^{(s)} = p(\theta^{(s)} \mid x_{-i}, y_{-i}) / p(\theta^{(s)} \mid x, y)$$

PSIS-LOO weighted predictive distribution

$$\theta^{(s)} \sim p(\theta \mid x, y), \quad w_i^{(s)} = p(\theta^{(s)} \mid x_{-i}, y_{-i}) / p(\theta^{(s)} \mid x, y)$$
$$p(y_i \mid x_i, x_{-i}, y_{-i}) \approx \sum_{s=1}^{S} [\tilde{w}_i^{(s)} p(y_i \mid x_i, \theta^{(s)})]$$

- $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal $p(\theta \mid x, y)$ and target $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_{i}^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_{i} \mid x_{i}, \theta^{(s)})}$$

$$\tilde{w}_{i}^{(s)} = \frac{w_{i}^{(s)}}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

$$p(y_{i} \mid x_{i}, x_{-i}, y_{-i}) \approx \sum_{i}^{S} \left[\tilde{w}_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]$$

- $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal $p(\theta \mid x, y)$ and target $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_{i}^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_{i} \mid x_{i}, \theta^{(s)})}$$

$$\tilde{w}_{i}^{(s)} = \frac{w_{i}^{(s)}}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

$$(x, y_{-i}) \approx \sum_{s'=1}^{S} \left[\tilde{w}_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]$$

$$p(y_{i} \mid x_{i}, x_{-i}, y_{-i}) \approx \sum_{s=1}^{S} \left[\tilde{w}_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]$$
$$\approx \frac{\sum_{s=1}^{S} \left[w_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

- $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal $p(\theta \mid x, y)$ and target $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_i^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_i \mid x_i, \theta^{(s)})}$$

$$\tilde{w}_i^{(s)} = \frac{w_i^{(s)}}{\sum_{s'=1}^{S} w_i^{(s')}}$$

$$p(y_{i} \mid x_{i}, x_{-i}, y_{-i}) \approx \sum_{s=1}^{S} \left[\tilde{w}_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]$$

$$\approx \frac{\sum_{s=1}^{S} \left[w_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

$$\approx \frac{1}{\frac{1}{S} \sum_{t=1}^{S} w_{i}^{(s')}}$$

- $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$
- Proposal $p(\theta \mid x, y)$ and target $p(\theta \mid x_{-i}, y_{-i})$
- Importance ratio

$$w_{i}^{(s)} = \frac{p(\theta^{(s)} \mid x_{-i}, y_{-i})}{p(\theta^{(s)} \mid x, y)} \propto \frac{1}{p(y_{i} \mid x_{i}, \theta^{(s)})}$$
$$\tilde{w}_{i}^{(s)} = \frac{w_{i}^{(s)}}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

$$p(y_{i} \mid x_{i}, x_{-i}, y_{-i}) \approx \sum_{s=1}^{S} \left[\tilde{w}_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]$$

$$\approx \frac{\sum_{s=1}^{S} \left[w_{i}^{(s)} p(y_{i} \mid x_{i}, \theta^{(s)}) \right]}{\sum_{s'=1}^{S} w_{i}^{(s')}}$$

$$\approx \frac{1}{\frac{1}{S} \sum_{s'=1}^{S} w_{i}^{(s')}} = \frac{1}{\frac{1}{S} \sum_{s=1}^{S} \frac{1}{p(y_{i} \mid x_{i}, \theta^{(s)})}}$$

• $p(y_i \mid x_i, x_{-i}, y_{-i}) = \int p(y_i \mid x_i, \theta) p(\theta \mid x_{-i}, y_{-i}) d\theta$

$$p(y_i \mid x_i, x_{-i}, y_{-i}) \approx \sum_{s=1}^{S} \left[\tilde{w}_i^{(s)} p(y_i \mid x_i, \theta^{(s)}) \right]$$
$$\approx \frac{1}{\frac{1}{S} \sum_{s'=1}^{S} w_i^{(s')}}$$

- The variability of importance weights matter
 - Pareto-k diagnostic
 - Pareto smoothed importance sampling LOO (PSIS-LOO)

ESS
$$\approx 1/\sum_{s=1}^{S} (\tilde{w}^{(s)})^2 \approx 459$$

Pareto $\hat{k} \approx 0.52$

- Pareto \hat{k} estimates the tail shape which determines the convergence rate of PSIS. Less than 0.7 is ok.

see Vehtari, Gelman & Gabry (2017b)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} and convergence rate of PSIS

CLT says that to half the MCSE, need 4 times bigger S

Pareto- \hat{k} and convergence rate of PSIS

- CLT says that to half the MCSE, need 4 times bigger S
- If Pareto- $\hat{k} \approx 0.7$, to half the MCSE, need 10 times bigger S

Pareto- \hat{k} and convergence rate of PSIS

- CLT says that to half the MCSE, need 4 times bigger S
- If Pareto- $\hat{k}\approx 0.7$, to half the MCSE, need 10 times bigger S
- If Pareto- $\hat{k} > 1$, to half the MCSE, nothing helps

• Pareto- \hat{k} for each leave-one-out fold indicates reliability of the PSIS-LOO approximation

PSIS-LOO diagnostics

Pareto k diagnostic values:

		Count	Pct.	Min.	n_eff
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<na></na>	
(1, Inf)	(very bad)	0	0.0%	<na></na>	

PSIS-LOO diagnostics

Pareto k diagnostic values:

	Ü	Count	Pct.	Min.	n eff
(-Inf, 0.5]	(good)		90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<na></na>	
(1, Inf)	(very bad)	0	0.0%	<na></na>	

loo package

Computed from 4000 by 20 log-likelihood matrix

```
Estimate SE
elpd loo -29.5 3.3
p_loo 2.7 1.0
```

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

Pareto	K	diagr	iostic	value	s:				
					Count	Pct.	Min.	n_(eff
(-Inf,	0.	.5]	(good)		18	90.0%	899		
(0.5,	0.	.7]	(ok)		2	10.0%	459		
(0.7	,	1]	(bad)		0	0.0%	<na></na>		
(1,	۱r	nf)	(very	bad)	0	0.0%	<na></na>		

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

see more in Vehtari, Gelman & Gabry (2017b)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
 - equivalent to using model to filter the noise out of the weights

See more in Vehtari, Simpson, Gelman, Yao & Gabry (2021)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
 - equivalent to using model to filter the noise out of the weights
- Reduced variability compared to the plain IS
- Reduced bias compared to the truncated IS

See more in Vehtari, Simpson, Gelman, Yao & Gabry (2021)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
 - equivalent to using model to filter the noise out of the weights
- Reduced variability compared to the plain IS
- Reduced bias compared to the truncated IS
- Asymptotically consistent under some mild conditions

See more in Vehtari, Simpson, Gelman, Yao & Gabry (2021)

Stan code

$$\log(w_i^{(s)}) = \log(1/p(y_i \mid x_i, \theta^{(s)})) = -\log_{\text{lik[i]}}$$

Stan code

```
\log(w_i^{(s)}) = \log(1/p(y_i \mid x_i, \theta^{(s)})) = -\log_{\text{lik[i]}}
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  y ~ normal(mu, sigma);
generated quantities {
  vector[N] log lik;
  for (i in 1:N)
    log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
```

Stan code

```
\log(w_i^{(s)}) = \log(1/p(y_i \mid x_i, \theta^{(s)})) = -\log_{\text{lik[i]}}
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  y ~ normal(mu, sigma);
generated quantities {
  vector[N] log lik;
  for (i in 1:N)
    log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
```

RStanARM and brms compute log_lik by default

 RStan (log_lik in gen. quantities) loo(fit)

- RStan (log_lik in gen. quantities) loo(fit)
- CmdStanR (log_lik in gen. quantities) fit\$loo()

- RStan (log_lik in gen. quantities) loo(fit)
- CmdStanR (log_lik in gen. quantities) fit\$loo()
- RStanARM, brms loo(fit)

- RStan (log_lik in gen. quantities) loo(fit)
- CmdStanR (log_lik in gen. quantities) fit\$loo()
- RStanARM, brms loo(fit)
- brms alternative fit <- add_criterion(fit, 'loo')

rstan::loo(..., moment_match = TRUE)
 brms::loo(..., moment_match = TRUE)
 support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See
 http://mc-stan.org/loo/articles/loo2-moment-matching.html

- rstan::loo(..., moment_match = TRUE)
 brms::loo(..., moment_match = TRUE)
 support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See
 http://mc-stan.org/loo/articles/loo2-moment-matching.html
- rstanarm::loo(..., k_threshold = 0.7) brms::loo(..., k_threshold = 0.7) runs MCMC for the folds with \hat{k} above the threshold

- rstan::loo(..., moment_match = TRUE)
 brms::loo(..., moment_match = TRUE)
 support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See
 http://mc-stan.org/loo/articles/loo2-moment-matching.html
- rstanarm::loo(..., k_threshold = 0.7) brms::loo(..., k_threshold = 0.7) runs MCMC for the folds with \hat{k} above the threshold
- Integrated LOO (for some models)
 See https://users.aalto.fi/~ave/modelselection/roaches.html

- rstan::loo(..., moment_match = TRUE)
 brms::loo(..., moment_match = TRUE)
 support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See
 http://mc-stan.org/loo/articles/loo2-moment-matching.html
- rstanarm::loo(..., k_threshold = 0.7) brms::loo(..., k_threshold = 0.7) runs MCMC for the folds with \hat{k} above the threshold
- Integrated LOO (for some models)
 See https://users.aalto.fi/~ave/modelselection/roaches.html
- Use K-fold-CV (more about this later)
 rstanarm::kfold(..., K=10)
 brms::kfold(..., K=10)
 RStan/CmdStanR vignette
 http://mc-stan.org/loo/articles/loo2-elpd.html

Assumptions about the future observations

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i \mid x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

LOO is ok for fixed / designed x. SE is uncertainty about $y \mid x$.

Assumptions about the future observations

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i \mid x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

LOO is ok for random x. SE is uncertainty about $y \mid x$ and x.

Assumptions about the future observations

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i \mid x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i \mid x_i, x_{-i}, y_{-i})$) · $\sqrt{20} \approx 3.3$

LOO is ok for random x. SE is uncertainty about $y \mid x$ and x. Covariate shift can be handled with importance weighting or modelling

Extrapolation is more difficult

Can LOO or other cross-validation be used with time series?

Leave-one-out cross-validation is ok for assessing conditional model

Leave-future-out (LFO) cross-validation is better for predicting future

m-step-ahead cross-validation is better for predicting further future

m-step-ahead leave-a-block-out cross-validation

Can LOO or other cross-validation be used with hierarchical data?

Summary of data generating mechanisms and prediction tasks

- You have to make some assumptions on data generating mechanism
- · Use the knowledge of the prediction task if available
- Cross-validation can be used to analyse different parts, even if there is no clear prediction task

Pareto smoothed importance sampling CV variants

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO
 - Stan demo of the challenges and integrated LOO at https://users.aalto.fi/~ave/modelselection/roaches.html
 - see also Merkel, Furr and Rabe-Hesketh (2018)

Pareto smoothed importance sampling CV variants

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO
 - Stan demo of the challenges and integrated LOO at https://users.aalto.fi/~ave/modelselection/roaches.html
 - see also Merkel, Furr and Rabe-Hesketh (2018)
- PSIS-LOO for non-factorized models
 - mc-stan.org/loo/articles/loo2-non-factorizable.html

Pareto smoothed importance sampling CV variants

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO
 - Stan demo of the challenges and integrated LOO at https://users.aalto.fi/~ave/modelselection/roaches.html
 - see also Merkel, Furr and Rabe-Hesketh (2018)
- PSIS-LOO for non-factorized models
 - mc-stan.org/loo/articles/loo2-non-factorizable.html
- PSIS-LOO for time series
 - Approximate leave-future-out cross-validation (LFO-CV) mc-stan.org/loo/articles/loo2-lfo.html

K-fold cross-validation

- K-fold cross-validation can approximate LOO
 - the same use cases as with LOO
- K-fold cross-validation can be used for hierarchical models
 - good for leave-one-group-out
- K-fold cross-validation can be used for time series
 - with leave-block-out

Balance k-fold approximation of LOO

Balance k-fold approximation of LOO

Random k-fold approximation of LOO

Random kfold approximation of LOO

K-fold-CV code

- RStan, CmdStanR
 See vignette http://mc-stan.org/loo/articles/loo2-elpd.html
- RStanARM, brms kfold(fit)
- Alternative data divisions kfold_split_random() kfold_split_balanced() kfold_split_stratified()

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - e.g. in concrete quality prediction reported that the absolute error is smaller than X with 90% probability

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - e.g. in concrete quality prediction reported that the absolute error is smaller than X with 90% probability
- Also useful in model checking in similar way as posterior predictive checking (PPC)
 - checking calibration of leave-one-out predictive posteriors (ppc_loo_pit in bayesplot)
 - model misspecification diagnostics (e.g. Pareto-k and p_loo)

see demos https://users.aalto.fi/~ave/casestudies.html

• High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)

- High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)
- This can be caused by
 - well specified, but very flexible model
 - e.g. hierarchical model with one parameter per observation
 - indicated by large p and p_loo (e.g. N/5 < p,p_loo < p)
 - moment matching or integrated LOO may help

- High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)
- This can be caused by
 - well specified, but very flexible model
 - e.g. hierarchical model with one parameter per observation
 - indicated by large p and p_loo (e.g. N/5 < p,p_loo < p)
 - moment matching or integrated LOO may help
 - misspecified model / outliers
 - indicated by p_loo << p, or p_loo > p
 - · improve model, check data

- High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)
- This can be caused by
 - well specified, but very flexible model
 - e.g. hierarchical model with one parameter per observation
 - indicated by large p and p_loo (e.g. N/5 < p,p_loo < p)
 - moment matching or integrated LOO may help
 - misspecified model / outliers
 - indicated by p_loo << p, or p_loo > p
 - improve model, check data
- See more in CV-FAQ

Sometimes cross-validation is not needed

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 11.

Sometimes cross-validation is not needed

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 11.

- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2019). Visualization in Bayesian workflow. JRSS A, https://doi.org/10.1111/rssa.12378
- mc-stan.org/bayesplot/articles/graphical-ppcs.html

Model comparison and selection

Next lecture

- Model comparison and selection (elpd_diff, se)
- Related methods (WAIC, *IC, BF)
- Model averaging
- Potential overfitting in model selection