Predicting concrete quality

- How accurate the model is?
- Is it better than predicting with random guess?
- Is it possible that the model has overfitted?
- Is model B better than model A? (next week)

Outline

- What is cross-validation
- Leave-one-out cross-validation (elpd_loo, p_loo)
- Uncertainty in LOO (SE)
- Fast cross-validation
- PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
- K-fold cross-validation
- When is cross-validation applicable?
- data generating mechanisms and prediction tasks
- leave-many-out cross-validation

Next week

- Model comparison and selection (elpd_diff, se)
- Related methods (WAIC, *IC, BF)
- Model averaging
- Potential overfitting in model selection

Chapter 7

- 7.1 Measures of predictive accuracy
- 7.2 Information criteria and cross-validation
- Instead of 7.2, read:

Vehtari, A., Gelman, A., Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5):1413-1432. preprint at arxiv.org/abs/1507.04544.

- See also https://users.aalto.fi/~ave/modelselection/CV-FAQ.html

Next week

- 7.3 Model comparison based on predictive performance
- 7.4 Model comparison using Bayes factors
- 7.5 Continuous model expansion / sensitivity analysis
- 7.5 Example (may be skipped)

Predictive performance

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
- external validation

Predictive performance

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
- external validation
- Expected predictive performance
- approximates the external validation

Predictive performance

- We need to choose the utility/cost function
- more about these in lecture 10
- Application specific utility/cost functions are important
- eg. money, life years, quality adjusted life years, etc.

Predictive performance

- We need to choose the utility/cost function
- more about these in lecture 10
- Application specific utility/cost functions are important
- eg. money, life years, quality adjusted life years, etc.
- If are interested overall in the goodness of the predictive distribution, or we don't know (yet) the application specific utility, then good information theoretically justified choice is log-score

$$
\log p\left(y^{\text {rep }} \mid y, M\right)
$$

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

All Pareto k estimates are ok ($k<0.7$).
See help('pareto-k-diagnostic') for details.
Model comparison:
(negative 'elpd_diff' favors 1st model, positive favors 2nd)
elpd_diff se
$\begin{array}{ll}-0.2 & 0.1\end{array}$

True mean $y=a+b x$

True mean and sigma

Posterior mean

Posterior mean, alternative data realisation

Posterior mean

Posterior draws

Posterior predictive distribution

Posterior predictive distribution

$$
p(\tilde{y} \mid \tilde{x}=18, x, y)=\int p(\tilde{y} \mid \tilde{x}=18, \theta) p(\theta \mid x, y) d \theta
$$

New data

Posterior predictive distribution

Leave-one-out mean

Leave-one-out residual

Leave-one-out residual

$$
y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]
$$

Leave-one-out residual

$y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]$
Can be use to compute, e.g., RMSE, $R^{2}, 90 \%$ error

Leave-one-out residual

$y_{18}-E\left[p\left(\tilde{y} \mid \tilde{x}=18, x_{-18}, y_{-18}\right)\right]$
Can be use to compute, e.g., RMSE, $R^{2}, 90 \%$ error
See LOO- R^{2} at avehtari.github.io/bayes_R2/bayes_R2.html

Posterior predictive density

Posterior predictive density

$$
p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07
$$

Leave-one-out predictive density

$$
\begin{aligned}
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x, y\right) \approx 0.07 \\
& p\left(\tilde{y}=y_{18} \mid \tilde{x}=18, x_{-18}, y_{-18}\right) \approx 0.03
\end{aligned}
$$

Leave-one-out predictive densities

Leave-one-out log predictive densities

$\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right), \quad i=1, \ldots, 20$

Leave-one-out log predictive densities

$\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
an estimate of log posterior pred. density for new data

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{lpd}=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8$

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
lpd $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x, y\right) \approx-26.8$
p_loo = lpd - elpd_loo ≈ 2.7

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
p_loo = lpd - elpd_loo ≈ 2.7
asymptotically approaches p in case of regular faithful model

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
p_loo = lpd - elpd_loo ≈ 2.7
asymptotically approaches p in case of regular faithful model
see Vehtari, Gelman \& Gabry (2017a) and Vehtari \& Ojanen (2012) for more

Leave-one-out log predictive densities

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$
see Vehtari, Gelman \& Gabry (2017a) and Vehtari \& Ojanen (2012) for more

loo package

Computed from 4000 by 20 log-likelihood matrix

```
    Estimate SE
elpd_loo -29.5 3.3
p_loo 2.7 1.0
Monte Carlo SE of elpd_loo is 0.1.
Pareto k diagnostic values:
\begin{tabular}{clrrl}
\((-\operatorname{Inf}, 0.5]\) & (good) & 18 & \(90.0 \%\) & 899 \\
\((0.5,0.7]\) & (ok) & 2 & \(10.0 \%\) & 459 \\
\((0.7,1]\) & (bad) & 0 & \(0.0 \%\) & <NA〉 \\
\((1\), Inf) & (very bad) & 0 & \(0.0 \%\) & <NA〉
\end{tabular}
All Pareto k estimates are ok (k < 0.7).
See help('pareto-k-diagnostic') for details.
```


Helicopter flight time - elpd

Computed from 4000 by 145 log-likelihood matrix

	Estimate	SE
elpd_loo	-52.9	10.1
p_loo	9.0	1.3
looic	105.8	20.1

Monte Carlo SE of elpd_loo is 0.1.
All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.

Helicopter flight time $-R^{2}$

```
> bayes_R2(fit) |> round(digits=2)
    Estimate Est.Error Q2.5 Q97.5
R2 
> loo_R2(fit) |> round(digits=2)
    Estimate Est.Error Q2.5 Q97.5
R2
            0.36 0.07 0.22 0.48
```


Student retention $-R^{2}$

> bayes_R2(fit6)|>round (digits =2)
Estimate Est.Error Q2.5 Q97.5
$\begin{array}{lllll}\text { R2 } & 0.98 & 0 & 0.97 & 0.98\end{array}$
> loo_R2(fit6) |> round(digits =2)
Estimate Est.Error Q2.5 Q97.5
$\begin{array}{llllll}R 2 & 0.97 & 0.01 & 0.95 & 0.98\end{array}$

Student retention

Posterior predictive intervals

LOO predictive intervals

Student retention $-R^{2}$

Latent hierarchical linear vs. latent hierarchical linear + spline
> loo_R2(fit4) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5
$\begin{array}{lllll}\text { R2 } & 0.92 & 0.02 & 0.88 & 0.95\end{array}$
> loo_R2(fit6) |> round(digits=2)
Estimate Est.Error Q2.5 Q97.5
$\begin{array}{lllll}R 2 & 0.97 & 0.01 & 0.95 & 0.98\end{array}$

Student retention - elpd (log score)

Latent hierarchical linear vs. latent hierarchical linear + spline

```
> loo_compare(fit4, fit6)
            elpd_diff se_diff
fit6 0.0 0.0
fit4 -43.2 14.4
```

Next week more about this

LOO-PIT predictive checking

- LOO probability integral transform (LOO-PIT)

$$
p_{i}=p\left(y_{i}^{\text {rep }} \leq y_{i} \mid y_{-i}\right)
$$

- If $p\left(\tilde{y}_{i} \mid y_{-i}\right)$ is well calibrated, distribution of p_{i} 's would be uniform between 0 and 1

Student retention - LOO-PIT checking

pp_check(fit, type = "loo_pit_qq", ndraws=4000)
Latent hierarchical linear - LOO predictive intervals

LOO-PIT check

Student retention - LOO-PIT checking

pp_check(fit, type = "loo_pit_qq", ndraws=4000)
Latent hierarchical linear + spline - LOO predictive intervals/

Brute-force LOO

- Re-run MCMC n times to sample from $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- can take a lot of time

Brute-force LOO

- Re-run MCMC n times to sample from $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- can take a lot of time
- or high parallelization Cooper, Vehtari, Forbes, Kennedy, and Simpson (2023). Bayesian cross-validation by parallel Markov chain Monte Carlo. arXiv:2310.07002.

Fast cross-validation

- Pareto smoothed importance sampling LOO (PSIS-LOO)
- K-fold cross-validation

Importance sampling leave-one-out cross-validation

- We want to compute

$$
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta
$$

Importance sampling leave-one-out cross-validation

- We want to compute

$$
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta
$$

- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p\left(\theta \mid x_{-i}, y_{-i}\right)$

Importance sampling leave-one-out cross-validation

- We want to compute

$$
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta
$$

- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- Importance ratio

$$
w_{i}^{(s)}=\frac{p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right)}{p\left(\theta^{(s)} \mid x, y\right)} \propto \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)}
$$

Importance sampling leave-one-out cross-validation

- We want to compute

$$
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta
$$

- Proposal distribution is full posterior $\theta^{(s)} \sim p(\theta \mid x, y)$
- Target distribution is LOO-posterior $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- Importance ratio

$$
\begin{aligned}
& w_{i}^{(s)}=\frac{p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right)}{p\left(\theta^{(s)} \mid x, y\right)} \propto \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)} \\
& \tilde{w}_{i}^{(s)}=\frac{w_{i}^{(s)}}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}}
\end{aligned}
$$

Posterior draws

$$
\theta^{(s)} \sim p(\theta \mid x, y)
$$

Posterior predictive distribution

$$
\theta^{(s)} \sim p(\theta \mid x, y), \quad p(\tilde{y} \mid \tilde{x}, x, y) \approx \frac{1}{S} \sum_{s=1}^{S} p\left(\tilde{y} \mid \tilde{x}, \theta^{(s)}\right)
$$

Posterior predictive distribution

$$
\theta^{(s)} \sim p(\theta \mid x, y), \quad p(\tilde{y} \mid \tilde{x}, x, y) \approx \frac{1}{S} \sum_{s=1}^{S} p\left(\tilde{y} \mid \tilde{x}, \theta^{(s)}\right)
$$

PSIS-LOO weighted draws

PSIS-LOO weighted predictive distribution

$$
\begin{aligned}
& \theta^{(s)} \sim p(\theta \mid x, y), \quad w_{i}^{(s)}=p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right) / p\left(\theta^{(s)} \mid x, y\right) \\
& p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx \sum_{s=1}^{S}\left[\tilde{w}_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]
\end{aligned}
$$

Pareto smoothed importance sampling LOO

- $p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta$
- Proposal $p(\theta \mid x, y)$ and target $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- Importance ratio

$$
\begin{aligned}
w_{i}^{(s)} & =\frac{p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right)}{p\left(\theta^{(s)} \mid x, y\right)} \propto \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)} \\
\tilde{w}_{i}^{(s)} & =\frac{w_{i}^{(s)}}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}} \\
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) & \approx \sum_{s=1}^{S}\left[\tilde{w}_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]
\end{aligned}
$$

Pareto smoothed importance sampling LOO

- $p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta$
- Proposal $p(\theta \mid x, y)$ and target $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- Importance ratio

$$
\begin{aligned}
w_{i}^{(s)} & =\frac{p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right)}{p\left(\theta^{(s)} \mid x, y\right)} \propto \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)} \\
\tilde{w}_{i}^{(s)} & =\frac{w_{i}^{(s)}}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}} \\
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) & \approx \sum_{s=1}^{S}\left[\tilde{w}_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right] \\
& \approx \frac{\sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}}
\end{aligned}
$$

Pareto smoothed importance sampling LOO

- $p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta$
- Proposal $p(\theta \mid x, y)$ and target $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- Importance ratio

$$
\begin{aligned}
w_{i}^{(s)} & =\frac{p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right)}{p\left(\theta^{(s)} \mid x, y\right)} \propto \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)} \\
\tilde{w}_{i}^{(s)} & =\frac{w_{i}^{(s)}}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}} \\
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) & \approx \sum_{s=1}^{S}\left[\tilde{w}_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right] \\
& \approx \frac{\sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}} \\
& \approx \frac{1}{\frac{1}{S} \sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}}
\end{aligned}
$$

Pareto smoothed importance sampling LOO

- $p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta$
- Proposal $p(\theta \mid x, y)$ and target $p\left(\theta \mid x_{-i}, y_{-i}\right)$
- Importance ratio

$$
\begin{aligned}
w_{i}^{(s)} & =\frac{p\left(\theta^{(s)} \mid x_{-i}, y_{-i}\right)}{p\left(\theta^{(s)} \mid x, y\right)} \propto \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)} \\
\tilde{w}_{i}^{(s)} & =\frac{w_{i}^{(s)}}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}} \\
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) & \approx \sum_{s=1}^{S}\left[\tilde{w}_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right] \\
& \approx \frac{\sum_{s=1}^{S}\left[w_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right]}{\sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}} \\
& \approx \frac{1}{\frac{1}{S} \sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}}=\frac{1}{\frac{1}{S} \sum_{s=1}^{S} \frac{1}{p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)}}
\end{aligned}
$$

Pareto smoothed importance sampling LOO

- $p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)=\int p\left(y_{i} \mid x_{i}, \theta\right) p\left(\theta \mid x_{-i}, y_{-i}\right) d \theta$

$$
\begin{aligned}
p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) & \approx \sum_{s=1}^{S}\left[\tilde{w}_{i}^{(s)} p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right] \\
& \approx \frac{1}{\frac{1}{S} \sum_{s^{\prime}=1}^{S} w_{i}^{\left(s^{\prime}\right)}}
\end{aligned}
$$

- The variability of importance weights matter
- Pareto-k diagnostic
- Pareto smoothed importance sampling LOO (PSIS-LOO)

400 importance weights for leave-18th-out

4000 importance weights for leave-18th-out

4000 importance weights for leave-18th-out

$\mathrm{ESS} \approx 1 / \sum_{s=1}^{S}\left(\tilde{w}^{(s)}\right)^{2} \approx 459$
see Vehtari, Gelman \& Gabry (2017b)

4000 importance weights for leave-18th-out

$\mathrm{ESS} \approx 1 / \sum_{s=1}^{S}\left(\tilde{w}^{(s)}\right)^{2} \approx 459$
Pareto $\hat{k} \approx 0.52$

- Pareto \hat{k} estimates the tail shape which determines the convergence rate of PSIS. Less than 0.7 is ok.
see Vehtari, Gelman \& Gabry (2017b)

Pareto- $-\hat{k}$ diagnostic

Pickands (1975): many distributions have tail $(x>u)$ that is well approximated with Generalized Pareto distribution (GPD)

Pareto-k diagnostic

Pickands (1975): many distributions have tail $(x>u)$ that is well approximated with Generalized Pareto distribution (GPD)

Pareto-k diagnostic

Pickands (1975): many distributions have tail $(x>u)$ that is well approximated with Generalized Pareto distribution (GPD)

Pareto-k diagnostic

Pickands (1975): many distributions have tail $(x>u)$ that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} and convergence rate of PSIS

- CLT says that to half the MCSE, need 4 times bigger S

Pareto- \hat{k} and convergence rate of PSIS

- CLT says that to half the MCSE, need 4 times bigger S
- If Pareto- $\hat{k} \approx 0.7$, to half the MCSE, need 10 times bigger S

Pareto- \hat{k} and convergence rate of PSIS

- CLT says that to half the MCSE, need 4 times bigger S
- If Pareto $-\hat{k} \approx 0.7$, to half the MCSE, need 10 times bigger S
- If Pareto- $\hat{k}>1$, to half the MCSE, nothing helps
- Pareto- \hat{k} for each leave-one-out fold indicates reliability of the PSIS-LOO approximation

PSIS-LOO diagnostics

PSIS-LOO diagnostics

Pareto k diagnostic values:
Count Pct. Min. n_eff

$\left(\begin{array}{ll}- \text { Inf }, ~ 0.5] ~ & \text { (good) } \\ (0.5,0.7] & \text { (ok) }\end{array}\right.$	18	90.0%	899	
$(0.7,10.0 \%$	459			
$(1$, Inf $)$	(bad)	0	0.0%	$\langle N A\rangle$
$($ very bad)	0	0.0%	$\langle N A\rangle$	

PSIS-LOO diagnostics

Pareto k diagnostic values:
Count Pct. Min. n_eff

$\left(\begin{array}{ll}-\operatorname{Inf}, & 0.5]\end{array}\right.$	(good)	18	90.0%	899
$(0.5,0.7]$	(ok)	2	10.0%	459
$(0.7,1]$	(bad)	0	0.0%	$\langle N A\rangle$
$(1$, Inf $)$	(very bad)	0	0.0%	$\langle N A\rangle$

loo package

Computed from 4000 by 20 log－likelihood matrix

	Estimate	SE
elpd＿loo	-29.5	3.3
p＿loo	2.7	1.0

Monte Carlo SE of elpd＿loo is 0．1．
Pareto k diagnostic values：

		Count Pct．	Min．n＿eff
$(-$ Inf, 0.5$]$	（good）	18	90.0%
$(0.5,0.7]$	（ok）	2	10.0%
$(0.7,1]$	（bad）	0	0.0%
（1，Inf）	（very bad）	0	0.0%
＜NA〉	〈NA〉		

All Pareto k estimates are ok（ $k<0.7$ ）．
See help（＇pareto－k－diagnostic＇）for details．
see more in Vehtari，Gelman \＆Gabry（2017b）

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
- equivalent to using model to filter the noise out of the weights

See more in Vehtari, Simpson, Gelman, Yao \& Gabry (2021)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
- equivalent to using model to filter the noise out of the weights
- Reduced variability compared to the plain IS
- Reduced bias compared to the truncated IS

See more in Vehtari, Simpson, Gelman, Yao \& Gabry (2021)

Pareto smoothed importance sampling (PSIS)

- Replace the largest weights with ordered statistics of the fitted Pareto distribution
- equivalent to using model to filter the noise out of the weights
- Reduced variability compared to the plain IS
- Reduced bias compared to the truncated IS
- Asymptotically consistent under some mild conditions

See more in Vehtari, Simpson, Gelman, Yao \& Gabry (2021)

Stan code

$$
\log \left(w_{i}^{(s)}\right)=\log \left(1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right)=- \text { log_lik[i] }
$$

Stan code

$$
\log \left(w_{i}^{(s)}\right)=\log \left(1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right)=- \text { log_lik }^{(i]}
$$

```
model {
    alpha ~ normal(pmualpha, psalpha);
    beta ~ normal(pmubeta, psbeta);
    y ~ normal(mu, sigma);
}
generated quantities
    vector[N] log_lik;
    for (i in 1:N)
        log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
}
```


Stan code

$$
\log \left(w_{i}^{(s)}\right)=\log \left(1 / p\left(y_{i} \mid x_{i}, \theta^{(s)}\right)\right)=- \text { log_lik }^{(i]}
$$

```
model {
    alpha ~ normal(pmualpha, psalpha);
    beta ~ normal(pmubeta, psbeta);
    y ~ normal(mu, sigma);
}
generated quantities {
    vector[N] log_lik;
    for (i in 1:N)
        log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
}
```

- RStanARM and brms compute log_lik by default
- RStan (log_lik in gen. quantities) loo(fit)

loo()

- RStan (log_lik in gen. quantities) loo(fit)
- CmdStanR (log_lik in gen. quantities) fit\$loo()

loo()

- RStan (log_lik in gen. quantities) loo(fit)
- CmdStanR (log_lik in gen. quantities) fit\$loo()
- RStanARM, brms loo(fit)

loo()

- RStan (log_lik in gen. quantities) loo(fit)
- CmdStanR (log_lik in gen. quantities) fit\$loo()
- RStanARM, brms loo(fit)
- brms alternative fit <- add_criterion(fit, 'loo')

What if many high Pareto- \hat{k} 's

- rstan::loo(..., moment_match = TRUE) brms::loo(..., moment_match = TRUE) support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See http://mc-stan.org/loo/articles/loo2-moment-matching.html

What if many high Pareto- \hat{k} 's

- rstan::loo(..., moment_match = TRUE) brms::loo(..., moment_match = TRUE) support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See http://mc-stan.org/loo/articles/loo2-moment-matching.html
- rstanarm::loo(..., k_threshold = 0.7) brms::loo(..., k_threshold = 0.7)
runs MCMC for the folds with \hat{k} above the threshold

What if many high Pareto- \hat{k} 's

- rstan::loo(..., moment_match = TRUE) brms::loo(..., moment_match = TRUE) support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See http://mc-stan.org/loo/articles/loo2-moment-matching.html
- rstanarm::loo(..., k_threshold = 0.7) brms::loo(..., k_threshold = 0.7)
runs MCMC for the folds with \hat{k} above the threshold
- Integrated LOO (for some models)

See https://users.aalto.fi/~ave/modelselection/roaches.html

What if many high Pareto- \hat{k} 's

- rstan::loo(..., moment_match = TRUE) brms::loo(..., moment_match = TRUE) support implicitly adaptive importance sampling with moment matching algorithm by Paananen et al. (2021). See http://mc-stan.org/loo/articles/loo2-moment-matching.html
- rstanarm::loo(..., k_threshold = 0.7) brms::loo(..., k_threshold = 0.7)
runs MCMC for the folds with \hat{k} above the threshold
- Integrated LOO (for some models)

See https://users.aalto.fi/~ave/modelselection/roaches.html

- Use K-fold-CV (more about this later)
rstanarm::kfold(..., K=10)
brms::kfold(..., K=10)
RStan/CmdStanR vignette
http://mc-stan.org/loo/articles/loo2-elpd.html

Assumptions about the future observations

Fixed / designed x

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$
LOO is ok for fixed / designed x. SE is uncertainty about $y \mid x$.

Assumptions about the future observations

Distribution for x

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$
LOO is ok for random x. SE is uncertainty about $y \mid x$ and x.

Assumptions about the future observations

Distribution for x

elpd_loo $=\sum_{i=1}^{20} \log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right) \approx-29.5$
$\mathrm{SE}=\operatorname{sd}\left(\log p\left(y_{i} \mid x_{i}, x_{-i}, y_{-i}\right)\right) \cdot \sqrt{20} \approx 3.3$
LOO is ok for random x. SE is uncertainty about $y \mid x$ and x. Covariate shift can be handled with importance weighting or modelling

Interpolation vs extrapolation

Interpolation vs extrapolation

Nonlinear model fit

Interpolation vs extrapolation

Nonlinear model fit + new data

Interpolation vs extrapolation

Nonlinear model fit + new data

Extrapolation is more difficult

Cross-validation for time series?

Can LOO or other cross-validation be used with time series?

Cross-validation for time series

Leave-one-out cross-validation is ok for assessing conditional model

Cross-validation for time series

Leave-future-out (LFO) cross-validation is better for predicting future

Cross-validation for time series

m-step-ahead cross-validation is better for predicting further future

Cross-validation for time series

m-step-ahead leave-a-block-out cross-validation

Cross-validation for hierarchical data

Rats data

Can LOO or other cross-validation be used with hierarchical data?

Cross-validation for hierarchical data

Yes!

Cross-validation for hierarchical data

Yes!

Cross-validation for hierarchical data

Leave-one-time-point-out?

Yes!

Cross-validation for hierarchical data

Yes!

Cross-validation for hierarchical data

Predict given initial weight?

Yes!

Summary of data generating mechanisms and prediction tasks

- You have to make some assumptions on data generating mechanism
- Use the knowledge of the prediction task if available
- Cross-validation can be used to analyse different parts, even if there is no clear prediction task

Pareto smoothed importance sampling CV variants

- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO
- Stan demo of the challenges and integrated LOO at https://users.aalto.fi/~ave/modelselection/roaches.html
- see also Merkel, Furr and Rabe-Hesketh (2018)

Pareto smoothed importance sampling CV variants

- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO
- Stan demo of the challenges and integrated LOO at https://users.aalto.fi/~ave/modelselection/roaches.html
- see also Merkel, Furr and Rabe-Hesketh (2018)
- PSIS-LOO for non-factorized models
- mc-stan.org/loo/articles/loo2-non-factorizable.html

Pareto smoothed importance sampling CV variants

- PSIS-LOO for hierarchical models
- leave-one-group out is challenging for PSIS-LOO
- Stan demo of the challenges and integrated LOO at https://users.aalto.fi/~ave/modelselection/roaches.html
- see also Merkel, Furr and Rabe-Hesketh (2018)
- PSIS-LOO for non-factorized models
- mc-stan.org/loo/articles/loo2-non-factorizable.html
- PSIS-LOO for time series
- Approximate leave-future-out cross-validation (LFO-CV) mc-stan.org/loo/articles/loo2-lfo.html

K-fold cross-validation

- K-fold cross-validation can approximate LOO
- the same use cases as with LOO
- K-fold cross-validation can be used for hierarchical models
- good for leave-one-group-out
- K-fold cross-validation can be used for time series
- with leave-block-out

Balance k-fold approximation of LOO

Balance k-fold approximation of LOO

Random k-fold approximation of LOO

Random kfold approximation of LOO

K-fold-CV code

- RStan, CmdStanR

See vignette http://mc-stan.org/loo/articles/loo2-elpd.html

- RStanARM, brms
kfold(fit)
- Alternative data divisions
kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
- e.g. in concrete quality prediction reported that the absolute error is smaller than X with 90% probability

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
- e.g. in concrete quality prediction reported that the absolute error is smaller than X with 90% probability
- Also useful in model checking in similar way as posterior predictive checking (PPC)
- checking calibration of leave-one-out predictive posteriors (ppc_loo_pit in bayesplot)
- model misspecification diagnostics (e.g. Pareto-k and p_loo)
see demos https://users.aalto.fi/~ave/casestudies.html

High Pareto- \hat{k} values

- High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)

High Pareto- \hat{k} values

- High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)
- This can be caused by
- well specified, but very flexible model
- e.g. hierarchical model with one parameter per observation
- indicated by large p and p_loo (e.g. N/5 < p,p_loo < p)
- moment matching or integrated LOO may help

High Pareto- \hat{k} values

- High Pareto- \hat{k} value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)
- This can be caused by
- well specified, but very flexible model
- e.g. hierarchical model with one parameter per observation
- indicated by large p and p_loo (e.g. N/5 < p,p_loo < p)
- moment matching or integrated LOO may help
- misspecified model / outliers
- indicated by p_loo << p, or p_loo > p
- improve model, check data

High Pareto- \hat{k} values

- High Pareto-k value indicates the target distribution (LOO posterior) is very different from the proposal distribution (full data posterior)
- This can be caused by
- well specified, but very flexible model
- e.g. hierarchical model with one parameter per observation
- indicated by large p and p_loo (e.g. N/5 < p,p_loo < p)
- moment matching or integrated LOO may help
- misspecified model / outliers
- indicated by p_loo << p, or p_loo > p
- improve model, check data
- See more in CV-FAQ

Sometimes cross-validation is not needed

- Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.
Gelman, Hill \& Vehtari (2020): Regression and Other Stories, Chapter 11.

Sometimes cross-validation is not needed

- Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.
Gelman, Hill \& Vehtari (2020): Regression and Other Stories, Chapter 11.

- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2019). Visualization in Bayesian workflow. JRSS A, https://doi.org/10.1111/rssa. 12378
- mc-stan.org/bayesplot/articles/graphical-ppcs.html

Model comparison and selection

Next lecture

- Model comparison and selection (elpd_diff, se)
- Related methods (WAIC, *IC, BF)
- Model averaging
- Potential overfitting in model selection

