
Hamiltonian Monte Carlo and Stan

• Hamiltonian Monte Carlo uses gradient information and
dynamic simulation to reduce random-walk and increase
acceptance rate

• the performance scales well with the number of dimensions
• this lecture introduces the basic HMC and No-U-Turn-Sampler

based dynamic HMC
• other useful variants have been developed recently

• Stan is the most popular probabilistic programming framework
• many recent probprog frameworks use dynamic HMC samplers
• this lecture introduces Stan language and main features
• later you can also use higher level packages built on top of Stan
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BDA Chapter 12

• 12.1 Efficient Gibbs samplers (not part of the course)
• 12.2 Efficient Metropolis jump rules (not part of the course)
• 12.3 Further extensions to Gibbs and Metropolis (not part of the

course)
• 12.4 Hamiltonian Monte Carlo (important)
• 12.5 Hamiltonian dynamics for a simple hierarchical model

(useful example)
• 12.6 Stan: developing a computing environment (useful intro)
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Extra material for HMC / NUTS

• An introduction for applied users with good visualizations:
Monnahan, Thorson, and Branch (2016) Faster estimation of
Bayesian models in ecology using Hamiltonian Monte Carlo.
https://dx.doi.org/10.1111/2041-210X.12681

• A technical review of why HMC works:
Neal (2012). MCMC using Hamiltonian dynamics.
https://arxiv.org/abs/1206.1901

• The No-U-Turn Sampler:
Hoffman and Gelman (2014). The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.
https://jmlr.csail.mit.edu/papers/v15/hoffman14a.html

• Multinomial variant of NUTS:
Betancourt (2018). A Conceptual Introduction to Hamiltonian
Monte Carlo. https://arxiv.org/abs/1701.02434
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Extra material for Stan

• Gelman, Lee, and Guo (2015) Stan: A probabilistic
programming language for Bayesian inference and optimization.
http://www.stat.columbia.edu/~gelman/research/published/
stan_jebs_2.pdf

• Carpenter et al (2017). Stan: A probabilistic programming
language. Journal of Statistical Software 76(1).
https://dox.doi.org/10.18637/jss.v076.i01

• Stan User’s Guide, Language Reference Manual, and
Language Function Reference (in html and pdf)
https://mc-stan.org/users/documentation/

- easiest to start from Example Models in User’s guide
• Basics of Bayesian inference and Stan, part 1 Jonah Gabry &

Lauren Kennedy (StanCon 2019 Helsinki tutorial)
- https://www.youtube.com/watch?v=ZRpo41l02KQ&index=6&

list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
- https://www.youtube.com/watch?v=6cc4N1vT8pk&index=7&

list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
4 / 74

http://www.stat.columbia.edu/~gelman/research/published/stan_jebs_2.pdf
http://www.stat.columbia.edu/~gelman/research/published/stan_jebs_2.pdf
https://dox.doi.org/10.18637/jss.v076.i01
https://mc-stan.org/users/documentation/
https://www.youtube.com/watch?v=ZRpo41l02KQ&index=6&list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
https://www.youtube.com/watch?v=ZRpo41l02KQ&index=6&list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
https://www.youtube.com/watch?v=6cc4N1vT8pk&index=7&list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J
https://www.youtube.com/watch?v=6cc4N1vT8pk&index=7&list=PLuwyh42iHquU4hUBQs20hkBsKSMrp6H0J


Chapter 12 demos

• demo12_1: HMC
• https://chi-feng.github.io/mcmc-demo/
• http:

//elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
• cmdstanr_demo, rstan_demo
• http://sumsar.net/blog/2017/01/

bayesian-computation-with-stan-and-farmer-jons/
• http://mc-stan.org/documentation/case-studies.html
• https://mc-stan.org/cmdstanr/
• https://mc-stan.org/rstan/
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Hamiltonian Monte Carlo

• Originally for quantum-chromo-dynamic simulation (Duane et
al., 1987)

• Radford Neal started using for Bayesian neural networks in
1990’s

• The performance scales well with the number of dimensions
• Hoffman and Gelman’s (2014) NUTS variant and step size

adaptation made it more robust wrt the algorithm parameters
and thus easier to use

• Stan was the first probabilistic programming framework using
HMC+NUTS

• Now most popular probabilistic programming frameworks use it
(Stan, PyMC, TFP, Pyro, Turing.jl, etc.)

• Also used as the a high-fidelity reference in Approximate
Inference in Bayesian Deep Learning competition
https://izmailovpavel.github.io/neurips_bdl_competition/
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Hamiltonian Monte Carlo
• Uses log density (negative log density is called energy)
• Uses gradient of log density for more efficient sampling
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Hamiltonian Monte Carlo
• Uses log density (negative log density is called energy)
• Uses gradient of log density for more efficient sampling
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Hamiltonian Monte Carlo
• Uses log density (negative log density is called energy)
• Uses gradient of log density for more efficient sampling
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Hamiltonian Monte Carlo / No-U-Turn sampling

1. HMC basics (static HMC)

2. HMC + leapfrog discretization + Metropolis (static HMC)
• Duane et al. (1987)

3. NUTS + slice sampling + Metropolis (dynamic HMC)
• Hoffman & Gelman et al. (2014)

4. NUTS + multinomial (dynamic HMC)
• Betancourt (2018)
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Hamiltonian Monte Carlo

• Related methods
• Factorizing p(𝜃1, 𝜃2) = p(𝜃1 | 𝜃2)p(𝜃2): sample from

1) p(𝜃2),
2) p(𝜃1 | 𝜃2)

• Metropolis: jointly p(𝜃1, 𝜃2)
jump distribution is a combination of proposal distribution and
point mass at the previous value

• HMC
• Augment with 𝜙 (the same dimensionality as 𝜃)
• 1) sample directly from p(𝜙),

2) make a special joint Metropolis step for p(𝜃, 𝜙) = p(𝜃)p(𝜙)
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Hamiltonian Monte Carlo

1) Sample from p(𝜙)
• define p(𝜙) = normal(0, 1)

2) Metropolis update for p(𝜃, 𝜙) = p(𝜃)p(𝜙)
• proposal from Hamiltonian dynamic simulation
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Hamiltonian dynamic simulation

• Statistical mechanics and canonical distribution

p(𝜃, 𝜙) = p(𝜃)p(𝜙)

=
1
Z

exp(−(U(𝜃) + K (𝜙)))

=
1
Z

exp(−H(𝜃, 𝜙))

where
• U is potential energy function
• K is kinetic energy function
• H is Hamiltonian energy function
• 𝜙 is called a momentum variable

• The potential energy is the negative log density
U(𝜃) = − log(p(𝜃)) + C
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Hamiltonian dynamic simulation

Equations of motion, use also the gradient
d𝜃i

dt
=

𝜕H
𝜕𝜙i

d𝜙i

dt
= −𝜕H

𝜕𝜃i

From Monnahan et al (2017) 12 / 74



Hamiltonian Monte Carlo

1) Sample from p(𝜙)
• define p(𝜙) = normal(0, 1)

2) Metropolis update for p(𝜃, 𝜙) = p(𝜃)p(𝜙)
• proposal from Hamiltonian dynamic simulation

p(𝜃, 𝜙) ∝ exp(−H(𝜃, 𝜙))

From Monnahan et al (2017) 13 / 74



Leapfrog discretization

• Leapfrog discretization
• preserves volume
• reversible
• discretization error does not usually grow in time

From Neal (2012) 14 / 74
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Leapfrog discretization + Metropolis
• Leapfrog discretization

• due to the discretization error the simulation steps away from the
constant contour

• Metropolis step with r = exp
(
−H(𝜃∗, 𝜙∗) + H(𝜃 (t−1) , 𝜙 (t−1) )

)
• accept if the Hamiltonian energy in the end is higher
• accept with some probability if the Hamiltonian energy in the end

is lower

From Neal (2012) 15 / 74
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Two steps of Hamiltonian Monte Carlo
• Perfect simulation keeps p(𝜃, 𝜙) constant

• Discretized simulation keeps changes in p(𝜃, 𝜙) small
• Alternating sampling from p(𝜙) is crucial for moving to (𝜃, 𝜙)

points with different joint density

From Neal (2012) 16 / 74
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Leapfrog discretization, step size
• Small step size → high acceptance rate, but many log density

and gradient evaluations
• Big step size → less log density and gradient evaluations, but

lower acceptance rate

and the simulation may diverge

From Monnahan et al (2017)
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Leapfrog discretization, the number of steps

• Many steps can reduce random walk
• Many steps require many log density and gradient evaluations

From Monnahan et al (2017)
18 / 74



Static Hamiltonian Monte Carlo

• Fixed number of steps
• Demo https://chi-feng.github.io/mcmc-demo/

19 / 74
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No-U-Turn sampler
• Adaptively selects number of steps

• NUTS is a dynamic HMC algorithm, where dynamic refers to the
dynamic trajectory length

• simulate until a U-turn is detected
• the number of simulation steps doubled if no U-turn yet

• To keep reversibility of Markov chain
• need to simulate in two directions
• choose a point along the simulation path with slice sampling
• Metropolis acceptance step for the selected point

• For further efficiency
• simulation path parts further away from the starting point can

have higher probability
• max treedepth to keep computation in control

• Demo https://chi-feng.github.io/mcmc-demo/
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No-U-Turn sampler with multinomial sampling

• Original NUTS
• choose a point along the simulation path with slice sampling
• possibly with bigger weighting for further points
• Metropolis acceptance step for the selected point
• if the proposal is rejected the previous state is also the new state

• NUTS with multinomial sampling
• compute the probability of selecting a point and accepting it for

all points
• select the point with multinomial sampling
• more likely to accept a point that is not the previous one

• Demo https://chi-feng.github.io/mcmc-demo/
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Mass matrix and the step size adaptation

• Mass matrix refers to having different scaling for different
parameters and optionally also rotation to reduce correlations

• mass matrix is estimated during the adaptation phase of the
warm-up

• mass matrix is estimated using the draws so far

• Step size
• adjusted to be as big as possible while keeping discretization

error in control (adapt_delta)
• “Dual averaging” demo https://chi-feng.github.io/mcmc-demo/

• After adaptation the algorithm parameters are fixed and some
more iterations run to finish the warmup
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Max tree depth diagnostic
• NUTS specific diagnostic

• the dynamic simulation is build as a binary tree

from Hoffman & Gelman (2014)

• maximum simulation length, i.e. maximum number of steps, is
capped to avoid very long waiting times in case of bad behavior

• Indicates inefficiency in sampling leading to higher
autocorrelations and lower ESS (Seff)

• very low inefficiency can indicate problems that need to be
inverse-distance

• moderate inefficiency doesn’t invalidate the result
• Different parameterizations matter
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Divergences
• HMC specific: indicates that Hamiltonian dynamic simulation

has problems with unexpected fast changes in log-density
(compared to the used step size)

• indicates possibility of biased estimates

From Monnahan et al (2017)

• Demo https://chi-feng.github.io/mcmc-demo/
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Divergences

• HMC specific: indicates that Hamiltonian dynamic simulation
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Divergences

• HMC specific: indicates that Hamiltonian dynamic simulation
has problems with unexpected fast changes in log-density
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Divergences

• HMC specific: indicates that Hamiltonian dynamic simulation
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Problematic distributions

• Nonlinear dependencies
• simple mass matrix scaling doesn’t help

• Funnels
• optimal step size depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• efficiency of exploration is reduced
• central limit theorem doesn’t hold for mean and variance
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Some other recent HMC and gradient based variants

• ChEES-HMC (Hoffman et al., 2021)
• a GPU friendly adapted but fixed simulation length
• static after adaptation

• MEADS (Hoffman & Sountsov, 2022)
• a GPU friendly multi-chain adaptation for generalized HMC

(Horowitz, 1991) in which the momentum is partially updated
frequently

• instead of simulation length, need to choose the partial update
rate

• MALT (Riou-Durand and Vogrinc, 2022; Riou-Durand et al.,
2022)

• a GPU friendly method related to GHMC
• but avoids momentum flips after rejection
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Probabilistic programming language

• Wikipedia “A probabilistic programming language (PPL) is a
programming language designed to describe probabilistic
models and then perform inference in those models”

• To make probabilistic programming useful
• inference has to be as automatic as possible
• diagnostics for telling if the automatic inference doesn’t work
• easy workflow (to reduce manual work)
• fast enough (manual work replaced with automation)
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Probabilistic programming

• Enables agile workflow for developing probabilistic models
• language
• automated inference
• diagnostics

• Many frameworks Stan, PyMC, Pyro (Uber), TFP (Google),
Turing.jl, JAGS, ELFI, ...

• Short review of the landscape:
Štrumbelj et al. (2023). Past, Present, and Future of Software for
Bayesian Inference. Statistical Science, accepted for publication.
Preprint http://www.stat.columbia.edu/~gelman/research/
published/Bayesian_software_review-8.pdf.
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Stan - probabilistic programming framework

• Language, inference engine, user interfaces, documentation,
case studies, diagnostics, packages, ...

• autodiff to compute gradients of the log density

• Most popular, with more than 200K users in social, biological,
and physical sciences, medicine, engineering, and business

• Several full time developers, 40+ developers, more than 100
contributors

• R, Python, Julia, Scala, Stata, command line interfaces
• More than 200 R packages using Stan

mc-stan.org
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Stan

• Stanislaw Ulam (1909-1984)
• Monte Carlo method
• H-Bomb
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Binomial model - Stan code

Domain-specific language for constructing models
with common distributed as ∼ notation

data {
int<lower=0> N; // number of experiments
int<lower=0,upper=N> y; // number of successes

}

parameters {
real<lower=0,upper=1> theta; // parameter of the binomial

}

model {
theta ~ beta(1, 1); // prior
y ~ binomial(N, theta); // observation / data model

}
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Binomial model - Stan code

data {
int<lower=0> N; // number of experiments
int<lower=0,upper=N> y; // number of successes

}

• Data type and size are declared
• Stan checks that given data matches type and constraints

• If you are not used to strong typing, this may feel annoying, but it
will reduce the probability of coding errors, which will reduce
probability of data analysis errors
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Binomial model - Stan code

parameters {
real<lower=0,upper=1> theta; // parameter of the binomial

}

• Only continuous parameters allowed (discrete parameters can
often be integerated out in the model block)

• Parameters may have constraints
• Stan makes transformation to unconstrained space and

samples in unconstrained space
• e.g. log transformation for <lower=a>
• e.g. logit transformation for <lower=a,upper=b>

• For these declared transformation Stan automatically takes into
account the Jacobian of the transformation (see BDA3 p. 21)
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Binomial model - Stan code
model {

theta ~ beta(1, 1); // prior
y ~ binomial(N, theta); // observation model

}

• ~ defines a distribution statement
e.g. y is distributed as binomial(N, theta)

• these can be written also as log density increment statements
left side of | denotes what is distributed as, e.g., binomial

model {
target += beta_lpdf(theta | 1, 1);
target += binomial_lpmf(y | N, theta);

}

• target is the log posterior density (Lecture 4 discussed log)
• _lpdf for continuous, _lpmf for discrete distributions (left of |)
• if y are data, and theta is a parameter, then that term defines

log likelihood
• for Stan sampler there is no difference between prior and

likelihood, all that matters is the final target
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Stan

• You can write in Stan language any program to compute the log
density (Stan language is Turing complete)

• Stan compiles (transplies) the model written in Stan language to
C++

• this makes the sampling for complex models and bigger data
faster

• also makes Stan models easily portable, you can use your own
favorite interface and scripting language for manipulating data
and inference results (e.g. R, Python, Julia, Stata, ...)
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CmdStanR

CmdStanR is an R interface for Stan

# Load CmdStanR
library(cmdstanr)
options(mc.cores = 1)

# Compile Stan model
mod_bin <- cmdstan_model(stan_file = 'binom.stan')

# Sample from the posterior given the model and data
d_bin <- list(N = 10, y = 7)
fit_bin <- mod_bin$sample(data = d_bin)

# Show summary and access draws
fit_bin$summary()
draws <- fit_bin$draws(format = "df")
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# Sample from the posterior given the model and data
d_bin <- list(N = 10, y = 7)
fit_bin <- mod_bin$sample(data = d_bin)

# Show summary and access draws
fit_bin$summary()
draws <- fit_bin$draws(format = "df")
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Stan

• Compilation (unless previously compiled model available)
• Pick random initial values for MCMC chains
• Run warm-up iterations including adaptation of mass matrix and

step-size
• Sampling
• Generated quantities
• Save posterior draws
• Report divergences, ESS, R̂
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Difference between proportions

• An experiment was performed to estimate the effect of
beta-blockers on mortality of cardiac patients

• A group of patients were randomly assigned to treatment and
control groups:

• out of 674 patients receiving the control, 39 died
• out of 680 receiving the treatment, 22 died
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Difference between proportions

data {
int<lower=0> N1;
int<lower=0> y1;
int<lower=0> N2;
int<lower=0> y2;

}
parameters {
real<lower=0,upper=1> theta1;
real<lower=0,upper=1> theta2;

}
model {

theta1 ~ beta(1, 1);
theta2 ~ beta(1, 1);
y1 ~ binomial(N1, theta1);
y2 ~ binomial(N2, theta2);

}
generated quantities {
real oddsratio;
oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));

}
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Difference between proportions

generated quantities {
real oddsratio;
oddsratio = (theta2/(1-theta2))/(theta1/(1-theta1));

}

• generated quantities is run after the sampling
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Difference between proportions

d_bin2 <- list(N1 = 674, y1 = 39, N2 = 680, y2 = 22)
mod_bin2 <- cmdstan_model(stan_file = 'binom2.stan')
fit_bin2 <- mod_bin2$sample(data = d_bin2, refresh=1000)

> Running MCMC with 4 parallel chains...

Chain 1 Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1 Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1 Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1 Iteration: 2000 / 2000 [100%] (Sampling)
...
All 4 chains finished successfully.
Mean chain execution time: 0.0 seconds.
Total execution time: 0.2 seconds.
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Difference between proportions

options(posterior.num_args=list(sigfig=2))
fit_bin2$summary()

variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
1 lp__ -2.5e+2 -2.5e+2 1.0 0.74 -2.6e+2 -2.5e+2 1.0 1751. 2231.
2 theta1 5.9e-2 5.9e-2 0.0093 0.0093 4.5e-2 7.5e-2 1.0 3189. 2657.
3 theta2 3.4e-2 3.3e-2 0.0069 0.0067 2.3e-2 4.6e-2 1.0 3229. 2163.
4 oddsratio 5.7e-1 5.5e-1 0.16 0.15 3.5e-1 8.7e-1 1.0 2998. 2685.

• lp__ is the log density, ie, same as target
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HMC specific diagnostics

fit_bin2$diagnostic_summary(diagnostics = c("divergences",
"treedepth"))

$num_divergent
[1] 0 0 0 0

$num_max_treedepth
[1] 0 0 0 0

diagnostic_summary() includes E-BFMI diagnostic, which I’ll skip
in this course
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Difference between proportions (bayesplot)

draws <- fit_bin2$draws(format = "df")
mcmc_hist(draws, pars = 'oddsratio') +
geom_vline(xintercept = 1) +
scale_x_continuous(breaks = c(seq(0.25,1.5,by=0.25)))

0.25 0.50 0.75 1.00 1.25 1.50
oddsratio
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Difference between proportions (ggplot2)

draws <- fit_bin2$draws(format = "df")
draws |> ggplot(aes(x=oddsratio)) +
geom_histogram() +
geom_vline(xintercept = 1) +
scale_x_continuous(breaks = c(seq(0.25,1.5,by=0.25)))
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Difference between proportions (ggdist dot plot)

draws <- fit_bin2$draws(format = "df")
draws |> ggplot(aes(x=oddsratio)) +
geom_dotsinterval() +
geom_vline(xintercept = 1) +
scale_x_continuous(breaks = c(seq(0.25,1.5,by=0.25)))
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Difference between proportions (probability and MCSE)

Probability (and corresponding MCSE) that oddsratio<1

> draws |>
mutate_variables(p_oddsratio_lt_1 =

as.numeric(oddsratio<1)) |>
subset_draws("p_oddsratio_lt_1") |>
summarise_draws(prob=mean, MCSE=mcse_mean)

variable prob MCSE
p_oddsratio_lt_1 0.99 0.0023
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posterior object formats
Default is draws_array

> fit_bin2$draws()

# A draws_array: 1000 iterations, 4 chains, and 4 variables
, , variable = lp__

chain
iteration 1 2 3 4

1 -253 -253 -254 -253
2 -253 -253 -255 -252
3 -254 -252 -254 -253
4 -255 -253 -254 -254
5 -253 -253 -253 -253

, , variable = theta1

chain
iteration 1 2 3 4

1 0.054 0.052 0.045 0.049
2 0.062 0.060 0.070 0.058

...
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posterior object formats

draws_df looks prettier and works with ggplot()

> fit_bin2$draws(format ="df")

# A draws_df: 1000 iterations, 4 chains, and 4 variables
lp__ theta1 theta2 oddsratio

1 -253 0.054 0.033 0.59
2 -253 0.062 0.035 0.55
3 -254 0.047 0.026 0.54
4 -255 0.049 0.049 0.99
5 -253 0.068 0.035 0.50
6 -253 0.056 0.027 0.47
7 -253 0.071 0.031 0.43
8 -253 0.049 0.036 0.72
9 -253 0.049 0.036 0.72
10 -253 0.063 0.026 0.39
# ... with 3990 more draws
# ... hidden reserved variables {'.chain', '.iteration', '.draw'}
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posterior object formats
draws_rvar makes it easy to compute derived quantities

> as_draws_rvars(fit_bin2$draws())

# A draws_rvars: 1000 iterations, 4 chains, and 4 variables
$lp__: rvar<1000,4>[1] mean ± sd:
[1] -253 ± 1

$theta1: rvar<1000,4>[1] mean ± sd:
[1] 0.059 ± 0.0093

$theta2: rvar<1000,4>[1] mean ± sd:
[1] 0.034 ± 0.0069

$oddsratio: rvar<1000,4>[1] mean ± sd:
[1] 0.57 ± 0.16

> with(draws, (theta2/(1-theta2))/(theta1/(1-theta1)))

rvar<1000,4>[1] mean ± sd:
[1] 0.5689 ± 0.1577

> draws$oddsratio<1

rvar<1000,4>[1] mean ± sd:
[1] 0.9865 ± 0.1154
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Kilpisjärvi summer temperature

• Temperature at Kilpisjärvi in June, July and August from 1952 to
2013

• Is there change in the temperature?
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Normal linear model

data {
int<lower=0> N; // number of observations
vector[N] x;
vector[N] y;

}

parameters {
real alpha; // intercept
real beta; // slope
real<lower=0> sigma; // observation model sd

}

transformed parameters {
vector[N] mu;
mu = alpha + beta*x; // linear model

}

model {
y ~ normal(mu, sigma); // observation model

}
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Normal linear model

data {
int<lower=0> N; // number of observations
vector[N] x;
vector[N] y;

}

• difference between vector[N] x and array[N] real x

• only integer arrays: array[N] int x
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Normal linear model

parameters {
real alpha; // intercept
real beta; // slope
real<lower=0> sigma; // observation model sd

}

transformed parameters {
vector[N] mu;
mu = alpha + beta*x; // linear model

}

• transformed parameters are deterministic transformations of
parameters and data
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Student-t linear model

...
parameters {
real alpha;
real beta;
real<lower=0> sigma;
real<lower=1,upper=80> nu;

}
transformed parameters {
vector[N] mu;
mu = alpha + beta*x;

}
model {

nu ~ gamma(2, 0.1); // prior for nu
y ~ student_t(nu, mu, sigma); // observation model

}
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Priors for normal linear model

data {
int<lower=0> N; // number of observations
vector[N] x; //
vector[N] y; //
real pmualpha; // prior mean for alpha
real psalpha; // prior std for alpha
real pmubeta; // prior mean for beta
real psbeta; // prior std for beta

}
...
transformed parameters {

vector[N] mu;
mu = alpha + beta*x;

}
model {

alpha ~ normal(pmualpha, psalpha); // prior for alpha
beta ~ normal(pmubeta, psbeta); // prior for beta
y ~ normal(mu, sigma); // observation model

}
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Priors

• Prior for temperature increase?
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Kilpisjärvi summer temperature

Posterior fit
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Kilpisjärvi summer temperature

Posterior draws of alpha and beta
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Warning: 1 of 4000 (0.0%) transitions hit the maximum treedepth limit of 10.
See https://mc-stan.org/misc/warnings for details.

Hitting maximum treedepth (maximum number of steps) does not invalidate
results, but indicates inefficient sampling
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Kilpisjärvi summer temperature

Posterior draws of alpha and beta
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Kilpisjärvi summer temperature
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Linear regression model in Stan

Center the data inside the model code

data {
int<lower=0> N; // number of observations
vector[N] x;
vector[N] y;
real xpred; // covarite values for prediction

}

transformed data {
vector[N] x_std;
vector[N] y_std;
real xpred_std;
x_std = (x - mean(x)) / sd(x);
y_std = (y - mean(y)) / sd(y);
xpred_std = (xpred - mean(x)) / sd(x);

}
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Kilpisjärvi summer temperature

Posterior draws of alpha and beta when data is centered
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Kilpisjärvi summer temperature

Without centering

> fit_lin$summary(variables=c("alpha","beta"),
default_convergence_measures())

variable rhat ess_bulk ess_tail
alpha 1.0 919. 897.
beta 1.0 919. 895.

With centering

> fit_lin_std$summary(variables=c("alpha","beta"),
default_convergence_measures())

variable rhat ess_bulk ess_tail
alpha 1.0 3872. 2616.
beta 1.0 3770. 2396.
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RStanARM

• RStanARM provides simplified model description with
pre-compiled models

• no need to wait for compilation
• a restricted set of models

Two group Binomial model:

d_bin2 <- data.frame(N = c(674, 680), y = c(39,22), grp2 = c(0,1))
fit_bin2 <- stan_glm(y/N ~ grp2,

weights = N,
family = binomial(),
data = d_bin2)
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pre-compiled models

• no need to wait for compilation
• a restricted set of models

Two group Binomial model:

d_bin2 <- data.frame(N = c(674, 680), y = c(39,22), grp2 = c(0,1))
fit_bin2 <- stan_glm(y/N ~ grp2,

weights = N,
family = binomial(),
data = d_bin2)

Normal linear model

fit_lin <- stan_glm(temp ~ year,
data = d_lin)
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brms

• brms provides simplified model description
+ a larger set of models than RStanARM, but still restricted
- need to wait for the compilation

fit_bin2 <- brm(y | trials(N) ~ grp2,
family = binomial(),
data = d_bin2)

fit_lin_t <- brm(temp ~ year,
family = student(),
data = d_lin)
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Extreme value analysis
Geomagnetic storms
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Extreme value analysis

data {
int<lower=0> N;
vector<lower=0>[N] y;
int<lower=0> Nt;
vector<lower=0>[Nt] yt;

}
transformed data {

real ymax = max(y); // pre-compute a useful quantity
}
parameters {
real<lower=0> sigma;
real<lower=-sigma/ymax> k; // constraint can depend on other parameters

}
model {
y ~ gpareto(k, sigma); // user defined distribution

}
generated quantities {

vector[Nt] predccdf = gpareto_ccdf(yt, k, sigma);
}
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User defined functions
functions {

real gpareto_lpdf(vector y, real k, real sigma) {
// generalised Pareto log pdf with mu=0
// should check and give error if k<0
// and max(y)/sigma > -1/k
int N;
N <- dims(y)[1];
if (abs(k) > 1e-15)

return -(1+1/k)*sum(log1pv(y*k/sigma)) -N*log(sigma);
else

return -sum(y/sigma) -N*log(sigma); // limit k->0
}
vector gpareto_ccdf(vector y, real k, real sigma) {
// generalised Pareto log ccdf with mu=0
// should check and give error if k<0
// and max(y)/sigma < -1/k
if (abs(k) > 1e-15)

return exp((-1/k)*log1pv(y/sigma*k));
else

return exp(-y/sigma); // limit k->0
}

}
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Different interfaces

• CmdStanR / CmdStanPy
• Interface on top of command-line program CmdStan

• RStan / PyStan
• C++ functions of Stan are called directly from R / Python
• Higher integration between R/Python and Stan, but maybe more

difficult to install due to more requirements of compatible C++
compilers and libraries
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Other packages

• R
• posterior — posterior handling and diagnostics

(Lectures 5 and 6)
• bayesplot — visualization and model checking

(Lectures 5, 6, and 8)
• tidybayes and ggdist — more posterior and prediction

visualization (Lecture 6)
• marginaleffects — prediction and comparison visualization
• loo — cross-validation model assessment and comparison

(Lecture 9)
• projpred — projection predictive variable selection

(Lecture 12)
• priorsense — prior and likelihood sensitivity diagnostics

(Lecture 12)

• Python
• ArviZ — visualization, and model checking and assessment
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