
Markov chain Monte Carlo (MCMC)

• MCMC focus the posterior density evaluations to the part of the
parameter space where the most of the posterior mass is

• This lecture introduces two simplest MCMC algorithms Gibbs
and Metropolis

• these help to understand the basic idea
• in your assignment you implement Metropolis algorithm

• Next week introduces more elaborate and complex MCMC
algorithm

• after that in your assignments and projects, you will use ready
made efficient implementation

• This lecture introduces also necessary diagnostics to check
whether MCMC results are useful
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Chapter 11

• 11.1 Gibbs sampler
• 11.2 Metropolis and Metropolis-Hastings
• 11.3 Using Gibbs and Metropolis as building blocks
• 11.4 Inference and assessing convergence (important)

• potential scale reduction R̂ (R-hat)
• 11.5 Effective number of simulation draws (important)

• effective sample size (ESS / Seff)
• 11.6 Example: hierarchical normal model (quick glance)
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Chapter 11 demos

• demo11_1: Gibbs sampling
• demo11_2: Metropolis sampling
• demo11_3: Convergence of Markov chain
• demo11_4: split-R̂ and effective sample size (ESS or Seff)
• demo11_5: Diagnostics with posterior and bayesplot

packages
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It’s all about expectations (reminder)

Ep(𝜃 |y) [f (𝜃)] =
∫

f (𝜃)p(𝜃 | y)d𝜃,

where p(𝜃 | y) = p(y | 𝜃)p(𝜃)∫
p(y | 𝜃)p(𝜃)d𝜃

We can easily evaluate p(y | 𝜃)p(𝜃) for any 𝜃, but the integral∫
p(y | 𝜃)p(𝜃)d𝜃 is usually difficult.

We can use the unnormalized posterior q(𝜃 | y) = p(y | 𝜃)p(𝜃), for
example, in

• Grid (equal spacing) evaluation with self-normalization

Ep(𝜃 |y) [f (𝜃)] ≈
∑S

s=1
[
f (𝜃 (s) )q(𝜃 (s) | y)

]∑S
s=1 q(𝜃 (s) | y)

• Monte Carlo methods which can sample from p(𝜃 (s) | y) using
only q(𝜃 (s) | y)

Ep(𝜃 |y) [f (𝜃)] ≈
1
S

S∑︁
s=1

f (𝜃 (s) )
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Monte Carlo
• Monte Carlo methods we have discussed so far

• Inverse CDF works for 1D
• Analytic transformations work for only certain distributions
• Factorization works only for certain joint distributions
• Grid evaluation and sampling works in a few dimensions
• Rejection sampling works mostly in 1D (truncation is a special

case)
• Importance sampling is reliable only in special cases

• What to do in high dimensions?
• Markov chain Monte Carlo (Ch 11-12)
• Laplace, Variational*, EP* (Ch 4,13*)
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Markov chain Monte Carlo (MCMC)

• Automatically focuses density evaluations where most of the
posterior mass is
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Markov chain

• Andrey Markov proved weak law of large numbers and central
limit theorem for certain dependent-random sequences, which
were later named Markov chains

• CLT saying the sum / mean converges towards normal if the
variance is finite

• The probability of each event depends only on the state attained
in the previous event (or finite number of previous events)

• Markov estimated the transition probabilities for the 20 000 first
wovels and consonants in Pushkin’s novel “Yevgeniy Onegin”

• Markov’s model was a very small language model
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Markov chain and language models (off-topic)

• Deep learning language models are super big Markov models
• Brian Hayes (1983, A progress report on the fine art of turning

literature into drivel), experimented with 0–8th order Markov
chains for producing text. For example, using William Faulkner’s
story "Two Soldiers" to compute 8th order transition probabilities
and then randomly generate text:

"Who let you in here?" he said. "Go on, beat it." "Durn that," I said,
"They got to have wood and water. I can chop it and tote it. Come on,"
I said, "Where’s Pete?" And he looked jest like Pete first soldier
hollered. When he got on the table, he come in. He never come out of
my own pocket as a measure of protecting the company against riot
and bloodshed. And when he said. "You tell me a bus ticket, let alone
write out no case histories. Then the law come back with a knife!"

• In Markov chain Monte Carlo we are not interested in the sequences
directly, but how likely each state is in a long sequence
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Markov chain
• Example of a simple Markov chain

a 0.8 b
0.2

0.4
0.6

• Given known transition probabilities, we can simulate the
Markov process and count how often each state is visited

a a b b a a b b b b b b a a a a a a a a a a b b a a a a a a a a a b a a a a a b

p(a) ≈ 1
S

S∑︁
s=1

I (state = a)

= 0.7

• In discrete case we can also find the marginal probabilities by
examining the transition probability matrix

A =

(
0.8 0.2
0.4 0.6

)

As =

(
0.67 0.67
0.33 0.33

)
,where S ≥ 7 for 2 digit accuracy

• From As we get p(a) = 0.67 and p(b) = 0.33
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Markov chain Monte Carlo (MCMC)
• In continuous case, we can’t compute the full transition matrix,

but we can use conditional transition probabilities to simulate

• Produce draws 𝜃 (t) , given 𝜃 (t−1) , from a Markov chain,
constructed so that the equilibrium distribution is p(𝜃 | y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the 𝛼% of time where 𝛼% posterior

mass is
+ central limit theorem holds for expectations (Markov)
- draws are dependent
- construction of efficient Markov chains is not always easy
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+ central limit theorem holds for expectations (Markov)
- draws are dependent
- construction of efficient Markov chains is not always easy

10 / 63



Markov chain Monte Carlo (MCMC)
• In continuous case, we can’t compute the full transition matrix,

but we can use conditional transition probabilities to simulate
• Produce draws 𝜃 (t) , given 𝜃 (t−1) , from a Markov chain,

constructed so that the equilibrium distribution is p(𝜃 | y)
+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the 𝛼% of time where 𝛼% posterior

mass is
+ central limit theorem holds for expectations (Markov)

- draws are dependent
- construction of efficient Markov chains is not always easy
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Markov chain

• Set of random variables 𝜃1, 𝜃2, . . ., so that with all values of t, 𝜃t

depends only on the previous 𝜃 (t−1)

p(𝜃t | 𝜃1, . . . ,𝜃 (t−1) ) = p(𝜃t | 𝜃 (t−1) )

• Chain has to be initialized with some starting point 𝜃0

• Transition distribution Tt (𝜃t | 𝜃t−1) (may depend on t)
• by choosing a suitable transition distribution, the stationary

distribution of Markov chain is p(𝜃 | y)

11 / 63



Markov chain

• Set of random variables 𝜃1, 𝜃2, . . ., so that with all values of t, 𝜃t

depends only on the previous 𝜃 (t−1)

p(𝜃t | 𝜃1, . . . ,𝜃 (t−1) ) = p(𝜃t | 𝜃 (t−1) )

• Chain has to be initialized with some starting point 𝜃0

• Transition distribution Tt (𝜃t | 𝜃t−1) (may depend on t)
• by choosing a suitable transition distribution, the stationary

distribution of Markov chain is p(𝜃 | y)

11 / 63



Markov chain

• Set of random variables 𝜃1, 𝜃2, . . ., so that with all values of t, 𝜃t

depends only on the previous 𝜃 (t−1)

p(𝜃t | 𝜃1, . . . ,𝜃 (t−1) ) = p(𝜃t | 𝜃 (t−1) )

• Chain has to be initialized with some starting point 𝜃0

• Transition distribution Tt (𝜃t | 𝜃t−1) (may depend on t)
• by choosing a suitable transition distribution, the stationary

distribution of Markov chain is p(𝜃 | y)

11 / 63



Gibbs sampling

• Alternate sampling from 1D conditional distributions
• e.g. normal distribution, sample alternating from

p(𝜇 | 𝜎2, y) and p(𝜎2 | 𝜇, y)

• 1D is easy even if no conjugate prior and analytic posterior
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Gibbs sampling
• Alternate sampling from 1D conditional distributions
• demo11_1
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Gibbs sampling
• With conditionally conjugate priors, the sampling from the

conditional distributions is easy for wide range of models
• BUGS/WinBUGS/OpenBUGS/JAGS

• No algorithm parameters to tune
(cf. proposal distribution in Metropolis algorithm)

• For not so easy conditionals, use e.g. inverse-CDF
• Several parameters can be updated in blocks (blocking)
• Slow if parameters are highly dependent in the posterior

• demo11_1 continues
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Conditional vs joint

• How about sampling 𝜃 jointly?
• e.g. it is easy to sample from multivariate normal

• Can we use that to form a Markov chain?
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Metropolis algorithm

• Algorithm
1. starting point 𝜃0

2. t = 1, 2, . . .
(a) pick a proposal 𝜃∗ from the proposal distribution Jt (𝜃∗ | 𝜃t−1).

Proposal distribution has to be symmetric, i.e.
Jt (𝜃a | 𝜃b) = Jt (𝜃b | 𝜃a), for all 𝜃a, 𝜃b

(b) calculate acceptance ratio

r =
p(𝜃∗ | y)

p(𝜃t−1 | y)(c) set

𝜃t =

{
𝜃∗ with probability min(r, 1)
𝜃t−1 otherwise

ie, if p(𝜃∗ | y) > p(𝜃t−1 | y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous

• step c is executed by generating a random number from U(0, 1)
• p(𝜃∗ | y) and p(𝜃t−1 | y) have the same normalization terms, and

thus instead of p(· | y), unnormalized q(· | y) can be used, as
the normalization terms cancel out!
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Metropolis algorithm

• Example: one bivariate observation (y1, y2)
• bivariate normal distribution with unknown mean and known

covariance (
𝜃1
𝜃2

)���� y ∼ N
((

y1
y2

)
,

(
1 𝜌

𝜌 1

))
• proposal distribution Jt (𝜃∗ | 𝜃t−1) = N(𝜃∗ | 𝜃t−1, 𝜎2

p )
• demo11_2

• More examples https://chi-feng.github.io/mcmc-demo/
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Why Metropolis algorithm works

• Intuitively more draws from the higher density areas as jumps to
higher density are always accepted and only some of the jumps
to the lower density are accepted

• Theoretically
1. Prove that simulated series is a Markov chain which has unique

stationary distribution
2. Prove that this stationary distribution is the desired target

distribution
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Why Metropolis algorithm works

1. Prove that simulated series is a Markov chain which has unique
stationary distribution

a) irreducible

= positive probability of eventually reaching any state from any other
state

b) aperiodic

= aperiodic (return times are not periodic)
- holds for a random walk on any proper distribution (except for

trivial exceptions)

c) recurrent / not transient

= probability to return to a state i is 1
- holds for a random walk on any proper distribution (except for

trivial exceptions)
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Why Metropolis algorithm works

2. Prove that this stationary distribution is the desired target
distribution p(𝜃 | y)

- consider starting algorithm at time t − 1 with a draw
𝜃t−1 ∼ p(𝜃 | y)

- consider any two such points 𝜃a and 𝜃b drawn from p(𝜃 | y) and
labeled so that p(𝜃b | y) ≥ p(𝜃a | y)

- the unconditional probability density of a transition from 𝜃a to 𝜃b
is p(𝜃t−1 = 𝜃a, 𝜃

t = 𝜃b) = p(𝜃a | y)Jt (𝜃b | 𝜃a),
- the unconditional probability density of a transition from 𝜃b to 𝜃a

is
p(𝜃t−1 = 𝜃b, 𝜃

t = 𝜃a) = p(𝜃b | y)Jt (𝜃a | 𝜃b)
(
p(𝜃a | y)
p(𝜃b | y)

)

= p(𝜃a | y)Jt (𝜃a | 𝜃b),

which is the same as the probability of transition from 𝜃a to 𝜃b,
since we have required that Jt (· | ·) is symmetric

- since their joint distribution is symmetric, 𝜃t−1 and 𝜃t have the
same marginal distributions, and so p(𝜃 | y) is the stationary
distribution of the Markov chain of 𝜃
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Metropolis-Hastings algorithm

• Generalization of Metropolis algorithm for non-symmetric
proposal distributions

• acceptance ratio includes ratio of proposal distributions

r =
p(𝜃∗ | y)/Jt (𝜃∗ | 𝜃t−1)

p(𝜃t−1 | y)/Jt (𝜃t−1 | 𝜃∗)

=
p(𝜃∗ | y)Jt (𝜃t−1 | 𝜃∗)

p(𝜃t−1 | y)Jt (𝜃∗ | 𝜃t−1)
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Metropolis-Hastings algorithm

• Ideal proposal distribution is the distribution itself
• J(𝜃∗ | 𝜃) ≡ p(𝜃∗ | y) for all 𝜃
• acceptance probability is 1
• independent draws
• not usually feasible

• Good proposal distribution resembles the target distribution
• if the shape of the target distribution is unknown, usually normal

or t distribution is used
• After the shape has been selected, it is important to select the

scale
• small scale

→ many steps accepted, but the chain moves slowly due to
small steps

• big scale
→ long steps proposed, but many of those rejected and again
chain moves slowly

• Generic rule for rejection rate is 60-90% (but depends on
dimensionality and a specific algorithm variation)
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Gibbs sampling

• Specific case of Metropolis-Hastings algorithm
• single updated (or blocked)
• proposal distribution is the conditional distribution

→ proposal and target distributions are same
→ acceptance probability is 1
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Metropolis

• Usually doesn’t scale well to high dimensions
• if the shape doesn’t match the whole distribution, the efficiency

drops
• demo11_2
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Dynamic Hamiltonian Monte Carlo and NUTS

• Chapter 12 presents some more advanced methods
• Chapter 12 includes Hamiltonian Monte Carlo and NUTS, which

is one of the most efficient methods
• uses gradient information
• Hamiltonian dynamic simulation reduces random walk
• state-of-the-art MCMC used by most modern probabilistic

programming frameworks

• More next week
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HMC / NUTS

Comparison of algorithms on highly correlated  
250-dimensional Gaussian distribution

•Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, 
thinning by 1000

•Do 1,000 draws using Stan’s NUTS algorithm (no thinning)

•Do 1,000 independent draws (we can do this for multivariate normal)

from Hoffman & Gelman (2014) 26 / 63



Warm-up and convergence diagnostics

• Asymptotically chain spends the 𝛼% of time where 𝛼% posterior
mass is

• but in finite time the initial part of the chain may be
non-representative and lower error of the estimate can be
obtained by throwing it away
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Draws Steps of the sampler 90% HPD

• Warm-up = remove draws from the beginning of the chain
• warm-up may include also phase for adapting algorithm

parameters
• Convergence diagnostics

• Is the sample representative of the target distribution?
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MCMC draws are dependent

• Monte Carlo estimates still valid
(central limit theorem holds as proved by Andrey Markov)

Ep(𝜃 |y) [f (𝜃)] ≈
1
S

S∑︁
s=1

f (𝜃 (s) )

• Estimation of Monte Carlo error is more difficult
• dependency (due to the Markov process) reduces the efficiency

• evaluation of effective sample size (ESS)
• given finite variance, the distribution of the expectation

approaches normal distribution with variance 𝜎2
𝜃
/ESS
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Several chains
• Use of several chains make convergence diagnostics easier
• Start chains from different starting points – preferably

overdispersed
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No convergence

• Remove draws from the beginning of the chains and run chains
long enough so that it is not possible to distinguish where each
chain started and the chains are well mixed
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Several chains
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R̂: comparison of within and between variances of the
chains

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var_hat_plus = total variance estimate
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R̂

• M chains, each having N draws (with new R̂ notation)

• Within chains variance W

W =
1
M

M∑︁
m=1

s2
m, where s2

m =
1

N − 1

N∑︁
n=1

(𝜃nm − 𝜃.m)2

• Between chains variance B

B =
N

M − 1

M∑︁
m=1

(𝜃.m − 𝜃..)2,

where 𝜃.m =
1
N

N∑︁
n=1

𝜃nm, 𝜃.. =
1
M

M∑︁
m=1

𝜃.m

• B/N is variance of the means of the chains

• Estimate total variance var(𝜃 | y) as a weighted mean of W and
B

v̂ar+(𝜃 | y) = N − 1
N

W + 1
N

B
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R̂

• Estimate total variance var(𝜃 | y) as a weighted mean of W and
B

v̂ar+(𝜃 | y) = N − 1
N

W + 1
N

B

• this overestimates marginal posterior variance if the starting
points are overdispersed

• Given finite N, W underestimates marginal posterior variance
• single chains have not yet visited all points in the distribution
• when N → ∞, E(W) → var(𝜃 | y)

• As v̂ar+(𝜃 | y) overestimates and W underestimates, compute

R̂ =

√︄
v̂ar+

W

33 / 63
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R̂

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var_hat_plus = total variance estimate
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W = within chain variance estimate
var_hat_plus = total variance estimate

−4 −2 0 2 4

theta1

5000  warmup,  5000 post warmup iterations

var_hat_plus =  0.96

W =  0.95

−4 −2 0 2 4

theta1

Rhat =  1
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R̂

R̂ =

√︄
v̂ar+

W

• Estimates how much the scale of 𝜓 could reduce if N → ∞
• R̂ → 1, when N → ∞
• if R̂ is big (e.g., R > 1.01), keep sampling

• If R̂ close to 1, it is still possible that chains have not converged
• if starting points were not overdispersed
• distribution far from normal (especially if infinite variance)
• just by chance when N is finite
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Split-R̂

• BDA3: split-R̂
• Examines mixing and stationarity of chains
• To examine stationarity chains are split to two parts

• after splitting, we have M chains, each having N draws
• scalar draws 𝜃nm (n = 1, . . . ,N; m = 1, . . . ,M)
• compare means and variances of the split chains
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Rank normalized R̂

• Original R̂ requires that the target distribution has finite mean
and variance

• Rank normalization fixes this, is also more robust given finite but
high variance, and is more sensitive to differences in variance

• inverse normal-cdf of ranks
• inverse normal-cdf of ranks of absolute difference from median

• The original R̂ is still needed for ESS/MCSE computation as
shown later

• Notation updated compared to BDA3

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020). Rank-normalization,
folding, and localization: An improved R̂ for assessing convergence of
MCMC. Bayesian Analysis, doi:10.1214/20-BA1221.
https://projecteuclid.org/euclid.ba/1593828229.
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R̂ and rank normalized R̂ in posterior package

rhat_basic() without rank normalization
rhat() with rank normalization

x <- array(data=c(rnorm(1000,mean=-3),
rnorm(1000,mean=3)),

dim=c(1000, 2, 1))
x <- as_draws_matrix(x)
variables(x) <- "N_2"

x |>
summarise_draws(mean, sd, mcse_mean, rhat_basic, rhat)
variable mean sd mcse_mean rhat_basic rhat
N_2 0.0122 3.18 2.15 3.61 1.83
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R̂ and rank normalized R̂ in posterior package

rhat_basic() without rank normalization
rhat() with rank normalization

x <- array(data=c(rt(1000,df=1)-6,
rt(1000,df=1)+6),

dim=c(1000, 2, 1))
x <- as_draws_matrix(x)
variables(x) <- "t1_2"

x |>
summarise_draws(mean, sd, mcse_mean, pareto_khat,

rhat_basic, rhat)
variable mean sd mcse_mean pareto_khat rhat_basic rhat
t1_2 -1.11 42.1 1.23 1.07 1.01 1.47
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Rank normalized R̂

For example:

Cauchy mixture

→ ranks → inverse cdf
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R̂ and rank normalized R̂ in posterior package

rhat_basic() without rank normalization
rhat() with folding and rank normalization

x <- array(data=c(normal(1000),
normal(1000)*2),

dim=c(1000, 2, 1))
x <- as_draws_matrix(x)
variables(x) <- "N2v"

x |>
summarise_draws(mean, sd, mcse_mean,

rhat_basic, rhat)
variable mean sd mcse_mean rhat_basic rhat
N2v -0.05 1.6 0.03 1.00 1.09
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R̂ and rank normalized R̂ in posterior package

rhat_basic() without rank normalization
rhat() with folding and rank normalization

x <- array(data=c(normal(1000),
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Rank normalized R̂ with folding

For example:

Normal variance mixture

→ folded →
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Rank normalized R̂ with folding

For example:

Normal variance mixture → folded → inverse cdf
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Time series analysis

• Autocorrelation function
• describes the correlation given a certain lag
• can be used to compare efficiency of MCMC algorithms and

parameterizations
• For real valued, the correlation at lag n

E [(Xt+n − E[X]) (Xt − E[X])]
Var [X]
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Autocorrelation
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Autocorrelation (slow mixing due to small step size)
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Autocorrelation (slow mixing due to many rejections)
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Time series analysis

• Time series analysis can be used to estimate Monte Carlo error
in case of MCMC

• For expectation 𝜃

Var[𝜃] =
𝜎2
𝜃

Seff
where Seff = S/𝜏 (=ESS),
and 𝜏 is sum of autocorrelations
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Autocorrelation function

• 𝜏 describes the relative inefficiency due to the dependency
• new R̂ paper S = NM (in BDA3 N = nm and neff = N/𝜏)
• BDA3 focuses on Seff and not the Monte Carlo error directly

new R̂ paper discusses more about MCSEs for different
quantities
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Time series analysis

• Estimation of the autocorrelation using several chains

𝜌̂n = 1 −
W − 1

M
∑M

m=1 𝜌̂n,m

2v̂ar+

where 𝜌̂n,m is autocorrelation at lag n for chain m,
and W and v̂ar+ are the same as in R̂ (without rank
normalization)

• This combines R̂ and autocorrelation estimates
• takes into account if the chains are not mixing (the chains have

not converged)
• BDA3 has slightly different and less accurate equation. The

above equation is used in Stan 2.18+
• Compared to a method which computes the autocorrelation from

a single chain, the multi-chain estimate has smaller variance
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Time series analysis
• Estimation of 𝜏 𝜏 = 1 + 2

∞∑︁
t=1

𝜌̂t

where 𝜌̂t is empirical autocorrelation
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• empirical autocorrelation function is noisy and thus estimate of 𝜏
is noisy

• noise is larger for longer lags (less observations)
• less noisy estimate is obtained by truncating

𝜏 = 1 + 2
T∑︁

t=1
𝜌̂t
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Geyer’s adaptive window estimator

• Truncation can be decided adaptively
• for stationary, irreducible, recurrent Markov chain
• let Γm = 𝜌2m + 𝜌2m+1, which is sum of two consequent

autocorrelations
• Γm is positive, decreasing and convex function of m

• Initial positive sequence estimator (Geyer’s IPSE)
• Choose the largest m so, that all values of the sequence

Γ̂1, . . . , Γ̂m are positive
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Effective sample size
Effective sample size ESS = Seff ≈ S/𝜏
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Cumulative averages

𝜏 = 1 + 2
T∑︁

t=1
𝜌̂t

≈ 24
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Effective sample size
Effective sample size ESS = Seff ≈ S/𝜏
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Monte Carlo standard error (MCSE)

• MCSE is obtained as discussed in lecture 4, but replacing the
sample size S with the effective sample size ESS.

• See Digits case study for how many iterations to run and how
many digits to report
https://avehtari.github.io/casestudies/Digits/digits.html
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ESS and MCSE in posterior package

Simulated 4 chains with AR(0.3) process

drt |> summarise_draws(mean, sd, pareto_khat,
ess_mean, mcse_mean)

variable mean sd pareto_khat ess_mean mcse_mean
xn 0.01 0.99 -0.07 2280. 0.02
xt3 0.02 1.6 0.33 2452. 0.03
xt2 0.05 2.9 0.52 2903. 0.05
xt1 0.33 93. 1.0 3976. 1.5
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ESS and MCSE in posterior package

Simulated 4 chains with AR(0.3) process

drt |> summarise_draws(mean, pareto_khat,
ess_mean, mcse_mean)
ess_quantile, mcse_quantile)

/variable mean pareto_khat ess_mean mcse_mean ess_q95 mcse_q95
xn 0.01 -0.07 2280. 0.02 3251. 0.04
xt3 0.02 0.33 2452. 0.03 3251. 0.09
xt2 0.05 0.52 2903. 0.05 3251. 0.13
xt1 0.33 1.0 3976. 1.5 3251. 0.49
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Bulk-ESS and Tail-ESS in posterior package

• ESS depends on the quantity
• For quick diagnostic purposes the default summary shows

• median and median absolute deviation (mad), which are valid in
case of infinite mean and variance, too

• if mad is much smaller than sd, suspect infinite variance
• Rank-normalized R̂ rhat
• Bulk-ESS (ess_bulk) is generic ESS for sampling efficiency in

bulk using rank normalized values (works for infinite variance)
• Tail-ESS (ess_tail) is the minimum ESS for 5%- and

95%-quantiles

drt |> summarise_draws()

variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
xn 0.01 0.00 0.99 0.99 -1.6 1.6 1.00 2284. 3189.
xt3 0.02 0.00 1.6 1.1 -2.3 2.3 1.00 2284. 3189.
xt2 0.05 0.00 2.9 1.2 -2.8 2.9 1.00 2284. 3189.
xt1 0.33 0.00 93. 1.5 -5.8 6.1 1.00 2284. 3189.
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ESS and MCSE

• ESS and MCSE depend on the quantity
• Bulk-ESS and Tail-ESS are useful diagnostic summaries, but

eventually need to look at the ESS / MCSE for the quantity of
interest
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Diagnostic tools

For this week’s assignment:

• R̂, ESS, MCSE
• library(posterior)
• th |> summarise_draws(Rhat=basic_rhat, ESS=mean_ess)
• th |> summarise_draws(mean, mean_mcse)
• th |> summarize_draws(∼quantile(.x, probs = c(0.05,

0.95)))
• see demo11_5 and Digits case study for the examples how to

use these

• trace, autocorrelation, density, scatter plots in R
• library(bayesplot)
• mcmc_trace(th), mcmc_acf(th), mcmc_areas(th), ...
• see demo11_5 for the examples for more bayesplot examples

• Python
• see ArviZ package
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Problematic distributions

• Nonlinear dependencies
• optimal proposal depends on location

• Funnels
• optimal proposal depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• central limit theorem for expectations does not hold

60 / 63



Problematic distributions

• Nonlinear dependencies
• optimal proposal depends on location

• Funnels
• optimal proposal depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• central limit theorem for expectations does not hold

60 / 63



Problematic distributions

• Nonlinear dependencies
• optimal proposal depends on location

• Funnels
• optimal proposal depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• central limit theorem for expectations does not hold

60 / 63



Problematic distributions

• Nonlinear dependencies
• optimal proposal depends on location

• Funnels
• optimal proposal depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• central limit theorem for expectations does not hold

60 / 63



Next week: HMC, NUTS, and dynamic HMC
Effective sample size ESS = Seff ≈ S/𝜏
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Further diagnostics
• Pareto-k̂ diagnostic for checking whether variance is finite
• Dynamic HMC/NUTS has additional diagnostics

• divergences
• tree depth exceedences
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MCMC summary
• Construct a Markov chain which has desired stationary

distribution
• most of the density evaluations will be made where most of

posterior mass is, which helps to scale in higher dimensions
• better Markov chains are more efficient per density evaluation

• MCMC estimate is biased towards the initial value
• this bias can be non-negligible especially for short chains
• the bias can be reduced by discarding the initial part of the chain
• convergence diagnostics help to decide when the bias can be

expected to be negligible
• MCMC draws are correlated in time, but CLT holds (given finite

variance)
• effective sample size estimates help to decide how many

correlated draws are needed
• Probabilistic programming frameworks

• provide efficient MCMC algorithms that work well without manual
tuning for many posterior distributions (more next week)
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