
Chapter 10

• 10.1 Numerical integration (overview)
• 10.2 Distributional approximations (overview, more in Chapter 4

and 13)
• 10.3 Direct simulation and rejection sampling (overview)
• 10.4 Importance sampling

• used in PSIS-LOO (Lecture 9) and prior sensitivity analysis
(Lecture ?)

• 10.5 How many simulation draws are needed?
• see chapter notes for how many significant digits to report
• this week focus on independent draws and importance

sampling, next week necessary adjustments needed for
Markov chain Monte Carlo

• 10.6 Software (can be skipped)
• 10.7 Debugging (can be skipped)
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Notation

• In this chapter, generic p(𝜃) is used instead of p(𝜃 |y)
• Unnormalized distribution is denoted by q(·)

•
∫

q(𝜃)d𝜃 ≠ 1, but finite
• q(·) ∝ p(·)

• Proposal distribution is denoted by g(·)
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Numerical accuracy – floating point

• Floating point presentation of numbers. e.g. with 64bits
• closest value to zero is ≈ 2.2 · 10−308

• generate sample of 600 from normal distribution:
qr=rnorm(600)

• calculate joint density given normal:
prod(dnorm(qr)) → 0 (underflow)

• see log densities in the next slide
• closest value to 1 is ≈ 1 ± 2.2 · 10−16

• Laplace and ratio of girl and boy babies
• pbeta(0.5, 241945, 251527) → 1 (rounding)
• pbeta(0.5, 241945, 251527, lower.tail=FALSE) ≈ −1.2 · 10−42

there is more accuracy near 0
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Numerical accuracy – log scale

• Log densities
• use log densities to avoid over- and underflows in floating point

presentation
• prod(dnorm(qr)) → 0 (underflow)
• sum(dnorm(qr, log=TRUE)) → -847.3

• how many observations we can now handle?
• compute exp as late as possible

• e.g. for a > b, compute
log(exp(a) + exp(b)) = a + log(1 + exp(b − a))

e.g. log(exp(800) + exp(800)) → Inf
but 800 + log(1 + exp(800 − 800)) ≈ 800.69

• e.g. in Metropolis-algorithm (Assignment 5) compute the log of
ratio of densities using the identity
log(a/b) = log(a) − log(b)

• convenience functions
• matrixStats::logSumExp(lx) computes log(sum(exp(lx)))

using the above rule
• log1p(x) computes log(1+x) accurately also for |x| ≪ 1
• expm1(x) computes exp(x) - 1 accurately also for |x| ≪ 1
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It’s all about expectations

Ep(𝜃 |y) [h(𝜃)] =
∫

h(𝜃)p(𝜃 |y)d𝜃,

where p(𝜃 |y) = p(y|𝜃)p(𝜃)∫
p(y|𝜃)p(𝜃)d𝜃

We can easily evaluate p(y|𝜃)p(𝜃) for any 𝜃, but the integral∫
p(y|𝜃)p(𝜃)d𝜃 is usually difficult.

We can use the unnormalized posterior
q(𝜃 |y) = p(y|𝜃)p(𝜃) ∝ p(𝜃 |y), for example, in

• Grid (equal spacing) evaluation with self-normalization (lecture 3)

Ep(𝜃 |y) [h(𝜃)] ≈
∑S

s=1
[
h(𝜃 (s) )q(𝜃 (s) |y)

]∑S
s=1 q(𝜃 (s) |y)

• Monte Carlo methods which can sample from p(𝜃 (s) |y) using
only q(𝜃 (s) |y) (each draw has weight 1/S)

Ep(𝜃 |y) [h(𝜃)] ≈
1
S

S∑︁
s=1

h(𝜃 (s) )
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It’s all about expectations

E𝜃 [h(𝜃)] =
∫

h(𝜃)p(𝜃 |y)d𝜃

• Conjugate priors and analytic solutions (Ch 1-5, Lec 2–3)
• Grid integration and other quadrature rules (Ch 3, 10, Lec 3–4)
• Independent Monte Carlo, rejection and importance sampling

(Ch 10, Lec 4)
• Markov Chain Monte Carlo (Ch 11-12, Lec 5–6)
• Distributional approximations (Laplace, VB, EP) (Ch 4, 13)
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Quadrature integration

• The simplest quadrature integration is grid integration

E[𝜃] ≈
T∑︁

t=1
𝜃 (t)w(t) ,

where w(t) is the normalized probability of a grid cell t, and 𝛼 (t)

and 𝛽 (t) are center locations of grid cells

• In 1D further variations with better accuracy, e.g. trapezoid

• Adaptive quadrature methods add evaluation points where
needed, e.g., R function integrate()

• In 2D and higher
• nested quadrature
• product rules
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Grid sampling and curse of dimensionality

• In general the number of evaluations increase exponentially cD

• if we don’t know beforehand where the posterior mass is
• need to choose wide box for the grid
• need to have enough grid points to get some of them where

essential mass is

• e.g. 50 or 1000 grid points per dimension, and 10 dimensions
→ 5010 ≈ 1e17 grid points
→ 100010 ≈ 1e30 grid points

• R and my current laptop can compute density of normal
distribution about 50 million times per second
→ evaluation in 1e17 grid points would take 60 years
→ evaluation in 1e30 grid points would take 600 billion years
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Monte Carlo - history

• Used already before computers
• Buffon (18th century; needles)
• De Forest, Darwin, Galton (19th century)
• Pearson (19th century; roulette)
• Gosset (Student, 1908; hat)

• "Monte Carlo method" term was proposed by Metropolis, von
Neumann or Ulam in the end of 1940s

• they worked together in atomic bomb project
• Metropolis and Ulam, "The Monte Carlo Method", 1949

• Bayesians started to have enough cheap computation time in
1990s

• BUGS project started 1989 (last OpenBUGS release 2014)
• Gelfand & Smith, 1990
• Stan initial release 2012
• JAGS, Nimble, Tensorflow probability, PyMC, Pyro, BlackJAX

Turing.jl, ...
• Štrumbelj et al. (2024). Past, Present, and Future of Software for

Bayesian Inference. Statistical Science, 39(1):46-61.
https://doi.org/10.1214/23-STS907
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Monte Carlo

• Simulate draws from the target distribution
• these draws can be treated as any observations
• a collection of draws is sample

• Use these draws, for example,
• to compute means, deviations, quantiles
• to draw histograms
• to marginalize
• etc.
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Monte Carlo vs. deterministic

• Monte Carlo = simulation methods
• evaluation points are selected stochastically (randomly)

• Deterministic methods (e.g. grid)
• evaluation points are selected by some deterministic rule
• good deterministic methods converge faster (need less function

evaluations for the same accuracy)
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How many simulation draws are needed?

• How many draws or how big sample size?
• If draws are independent

• usual methods to estimate the uncertainty due to a finite number
of observations (finite sample size)

• Markov chain Monte Carlo produces dependent draws
• requires additional work to estimate the effective sample size
• next week
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How many simulation draws are needed?
• Expectation of unknown quantity E(𝜃) ≈ 1

S
∑S

s=1 𝜃
(s)

• If S is big,
• 𝜃 (s) are independent,
• p(𝜃) has finite variance,

then the central limit theorem (CLT) states that the distribution of
the expectation approaches normal distribution (see BDA3 Ch
4) with variance 𝜎2

𝜃
/S
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How many simulation draws are needed?
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S
∑S
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(s)

• If S is big,
• 𝜃 (s) are independent, and
• p(𝜃) has finite variance,

then the central limit theorem (CLT) states that the distribution of
the expectation approaches normal distribution (see BDA3 Ch
4) with variance 𝜎2

𝜃
/S

• this variance is independent on dimensionality of 𝜃

• See BDA3 Ch 4 for counter-examples for asymptotic normality

• 𝜎𝜃/
√

S is called Monte Carlo standard error (MCSE)
• In practice, 𝜎𝜃 will be estimated by√︃

1/(S − 1)∑S
s=1 (𝜃 (s) − E(𝜃))2
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Central limit theorem

• Valid also when p(𝜃) discrete
• the distribution of mean is discrete, but the comparison to

continuous normal is done using cumalative distribution functions

• 3Blue1Brown YouTube videos with nice visualisations
• CLT with discrete distributions: But what is the Central Limit

Theorem? https://www.youtube.com/watch?v=zeJD6dqJ5lo
• CLT with continuous distributions: Convolutions | Why X+Y in

probability is a beautiful mess
https://www.youtube.com/watch?v=IaSGqQa5O-M
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Example: Kilpisjärvi summer temperature

Average temperature in June, July, and August at Kilpisjärvi, Finland
in 1952–2013
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Example: Kilpisjärvi summer temperature

0.00 0.02 0.04
C°/year

Posterior of temperature change
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Example: Kilpisjärvi summer temperature

MCSE of posterior mean with S=100

0 2 4
C°/century

Posterior of temperature change

𝜎𝜃 ≈ 0.83, MCSE = 𝜎𝜃/
√

S ≈ 0.083,
in repeated sampling we may expect mean estimate to vary within

(1.8, 2.1) (90% interval)
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Example: Kilpisjärvi summer temperature

MCSE of posterior mean with S=1000

0 2 4
C°/century

Posterior of temperature change

𝜎𝜃 ≈ 0.83, MCSE ≈ 0.026,
in repeated sampling we may expect mean estimate to vary within

(1.9, 2.0) (90% interval)
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Tail quantiles are more difficult to estimate
See Vehtari, Gelman, Simpson, Carpenter, & Bürkner (2021) for quantile MCSE computation.
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How many simulation draws are needed?

• Posterior probability

p(𝜃 ∈ A) ≈ 1
S

∑︁
l

I (𝜃 (s) ∈ A)

where I (𝜃 (s) ∈ A) = 1 if 𝜃 (s) ∈ A
• I (·) is binomially distributed as p(𝜃 ∈ A)

• use beta CDF, or normal approximation
→ var(I (·)) = p(1 − p)S (Appendix A, p. 579)
→ standard deviation of p is

√︁
p(1 − p)/S

• if S = 100 and we observe 1
S
∑

l I (𝜃 (s) ∈ A) = 0.05,
then

√︁
p(1 − p)/S ≈ 0.02

i.e. accuracy is about 4% units
or from quantiles of beta distribution the range is (0.02, 0.1)

• S = 2000 draws needed for 1% unit accuracy
• To estimate small probabilities, a large number of draws is

needed
• to be able to estimate small p, need to get draws with 𝜃 (l) ∈ A,

which in expectation requires S ≫ 1/p
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Example: Kilpisjärvi summer temperature

Uncertainty given S=100, and 0 draws < 0

0.000 0.025 0.050 0.075 0.100
p(temperature change < 0)

Posterior uncertainty p(temperature change < 0)

20 / 63



Example: Kilpisjärvi summer temperature

Uncertainty given S=100, and 0 draws < 0

Uncertainty given S=100, and 1 draw < 0

0.000 0.025 0.050 0.075 0.100
p(temperature change < 0)

Posterior uncertainty p(temperature change < 0)

20 / 63



Example: Kilpisjärvi summer temperature

Uncertainty given S=100, and 0 draws < 0

Uncertainty given S=100, and 1 draw < 0
Uncertainty given S=100, and 2 draws < 0

0.000 0.025 0.050 0.075 0.100
p(temperature change < 0)

Posterior uncertainty p(temperature change < 0)

20 / 63



Example: Kilpisjärvi summer temperature
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Example: Kilpisjärvi summer temperature

Uncertainty given S=4000, and 34 draws < 0
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From probabilities to quantiles

• Probability: p(𝜃 < A) ≈ 1
S
∑

l I (𝜃 (s) < A)
• 5%-quantile: Find A so that p(𝜃 < A) = 0.05

• If S = 1000 and uncertainty interval for 5% probability is
(0.04, 0.06) (see earlier slide), we can find uncertainty interval
(A−,A+), so that p(𝜃 < A−) = 0.04, and p(𝜃 < A+) = 0.06

• we can summarise this interval by transforming it to MCSE
• see examples in

https://avehtari.github.io/casestudies/Digits/digits.html
• if interested, see algorithm details in Vehtari, Gelman, Simpson,

Carpenter, & Bürkner (2021), doi.org/10.1214/20-BA1221.
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posterior package

Posterior mean and 5% and 95% quantiles:

draws |>
subset_draws("beta100") |>
summarize_draws(mean,

~quantile(.x, probs = c(0.05, 0.95)))

The corresponding MCSE estimates:

draws |>
subset_draws("beta100") |>
summarize_draws(mcse_mean,

~mcse_quantile(.x, probs = c(0.05, 0.95)))

These _mcse functions are for MCMC draws, but if the number of
draws is big (≥ 1000), then these are accurate enough for
independent MC draws, too

22 / 63



posterior package

Posterior mean and 5% and 95% quantiles:

draws |>
subset_draws("beta100") |>
summarize_draws(mean,

~quantile(.x, probs = c(0.05, 0.95)))

The corresponding MCSE estimates:

draws |>
subset_draws("beta100") |>
summarize_draws(mcse_mean,

~mcse_quantile(.x, probs = c(0.05, 0.95)))

These _mcse functions are for MCMC draws, but if the number of
draws is big (≥ 1000), then these are accurate enough for
independent MC draws, too

22 / 63



posterior package

Posterior mean and 5% and 95% quantiles:

draws |>
subset_draws("beta100") |>
summarize_draws(mean,

~quantile(.x, probs = c(0.05, 0.95)))

The corresponding MCSE estimates:

draws |>
subset_draws("beta100") |>
summarize_draws(mcse_mean,

~mcse_quantile(.x, probs = c(0.05, 0.95)))

These _mcse functions are for MCMC draws, but if the number of
draws is big (≥ 1000), then these are accurate enough for
independent MC draws, too

22 / 63



posterior package

Posterior probability and the corresponding MCSE estimate:

draws |>
mutate_variables(beta0p = beta100>0) |>
subset_draws("beta0p") |>
summarize_draws(mean,

mcse = mcse_mean)

23 / 63



How many digits reports?
• Too many digits make reading of the results slower and give

false impression of the accuracy

• Don’t show digits which are just random noise
• check what is the Monte Carlo standard error

• Show meaningful digits given the posterior uncertainty
• Example: The mean and 90% central posterior interval for

temperature increase C◦/century based on posterior draws

• 2.050774 and [0.7472868 3.3017524] (NO!)
• 2.1 and [0.7 3.3]
• 2 and [1 3] (depends on the context)

• Example: The probability that temp increase is positive

• 0.9960000 (NO!)
• 1.00 (depends on the context)
• With 4000 draws MCSE ≈ 0.002. We could report that

probability is very likely larger than 0.99, or sample more to
justify reporting three digits

• For probabilities close to 0 or 1, consider also when the model
assumption justify certain accuracy

See also https://users.aalto.fi/~ave/casestudies/Digits/digits.html
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More data
• The analysis I just showed used data from 1952–2013

• With data data from 1952–2024
• The probability that temp increase is positive: 0.99975 ± 0.00025

(90% interval),
which can be reported as more than 99.95% probability

• With data from other locations we would be even more certain
• Summer 2023 was the second hottest in the recorded history
• Summer 2024 was the hottest in the recorded history
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How many simulation draws are needed?

• Less draws needed with
• deterministic methods
• marginalization (Rao-Blackwellization)
• variance reduction methods, such, control variates

• Number of independent draws needed doesn’t depend on the
number of dimensions

• but it may be difficult to obtain independent draws in high
dimensional case

• Some algorithms are less efficient
• Compute MCSE using effective sample size (ESS) instead of the

number of draws S
• Usually ESS< S

• How to check if a distribution has finite mean and variance?
• Pareto-k̂ diagnostic
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Simple example: x ∼ N, t4, t2, t1, t1/2

• N has all moments finite
• t𝜈 has less than 𝜈 fractional moments
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Ê
[x

]

0.0

0.5

1.0

1.5

2.0

100 101 102 103 104

S
Ê
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Pareto-k̂ diagnostic

Pickands (1975): many distributions have tail (x > u) that is well
approximated with Generalized Pareto distribution (GPD)

Bulk Tail

u0.0 2.5 5.0 7.5 10.0
x
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Pareto-k̂ diagnostic

Pickands (1975): many distributions have tail (x > u) that is well
approximated with Generalized Pareto distribution (GPD)

Tail

x (s) ~ t4
Generalized Pareto fit
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x
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Pareto-k̂ diagnostic

GPD has a shape parameter k,
and 1/k finite fractional moments

Bulk Tail

u0.0 2.5 5.0 7.5 10.0
x
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Pareto-k̂ diagnostic: x ∼ N
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Pareto-k̂ diagnostic: x ∼ t2
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Pareto-k̂ diagnostic: x ∼ t1
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Pareto-k̂ diagnostic: x ∼ t1/2
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Pareto-k̂ diagnostic is pre-asymptotic diagnostic

Thick tailed but truncated distribution

We can make estimates only based on what we have observed.

max(min(x,8000),−8000)

x ~ t1/2
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Pareto-k̂ diagnostic: thick-tailed bounded distribution
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Thick-tailed bounded distributions in practice

• Thick-tailed distributions are common in importance sampling
and variational divergence estimation
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Pareto-k̂ in posterior package

> drt |> summarise_draws(mean, sd, mcse_mean)

variable mean sd mcse_mean
xn 0.007 0.99 0.01
xt3 0.004 1.66 0.02
xt2_5 0.002 2.01 0.02
xt2 -0.008 3.00 0.03
xt1_5 -0.067 8.14 0.08
xt1 -1.57 122. 1.21
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Pareto-k̂ in posterior package

> drt |> summarise_draws(mean, sd, mcse_mean, pareto_khat)

variable mean sd mcse_mean pareto_khat
xn 0.007 0.99 0.01 -0.02
xt3 0.004 1.66 0.02 0.36
xt2_5 0.002 2.01 0.02 0.43
xt2 -0.008 3.00 0.03 0.53
xt1_5 -0.067 8.14 0.08 0.72
xt1 -1.57 122. 1.21 1.08
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How to use Pareto-k̂ diagnostic

• To check posterior of any quantity of interest
• if high k̂, maybe use some other summary than mean, e.g.,

quantiles

• Especially useful inside algorithms that rely on expectations
• other summaries can’t be used
• automated diagnostic as in PSIS-LOO (Lecture 9) and

priorsense (Lecture ?)
• k̂ estimate has it’s own variation given finite sample size

• e.g. if close to 0.5 more draws help to improve to decide whether
k < 0.5

• Pareto-smoothing improves the mean estimate
• reliable mean and MCSE estimates when Pareto-k < 0.7
• required minimum sample size and convergence rate estimates

for different values of k
• more on lecture 9

See more in Vehtari, Simpson, Gelman, Yao, and Gabry (2024). Pareto
smoothed importance sampling. JMLR, 25(72):1-58.
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Direct simulation

• Produces independent draws
• Using analytic transformations of uniform random numbers (e.g.

appendix A)
• factorization
• numerical inverse-CDF

• Problem: restricted to limited set of models
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Random number generators

• Good pseudo random number generators are sufficient for
Bayesian inference

• pseudo random generator uses deterministic algorithm to
produce a sequence which is difficult to make difference from
truly random sequence

• modern software used for statistical analysis have good pseudo
RNGs
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Direct simulation: Example

• Box-Muller -method:
If U1 and U2 are independent draws from distribution U(0, 1),
and

X1 =
√︁
−2 log(U1) cos(2𝜋U2)

X2 =
√︁
−2 log(U1) sin(2𝜋U2)

then X1 and X2 are independent draws from the distribution
N(0, 1)

• not the fastest method due to trigonometric computations
• for normal distribution more than ten different methods
• e.g. R uses inverse-CDF
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Indirect sampling

• Rejection sampling
• Importance sampling
• Markov chain Monte Carlo (next week)
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Rejection sampling

- Proposal forms envelope over the target distribution
q(𝜃 |y)/Mg(𝜃) ≤ 1

- Draw from the proposal and accept with probability
q(𝜃 |y)/Mg(𝜃)

- Common for truncated distributions

●

●

accepted

rejected

−4 −2 0 2 4
θ

Mg(theta) q(theta|y)
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Rejection sampling

• The effective sample size (ESS) is the number of accepted
draws

• with bad proposal distribution may require a lot of trials
• selection of good proposal gets very difficult when the number of

dimensions increase
• reliable diagnostics and thus can be a useful part
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Importance sampling

- Proposal does not need to have a higher value everywhere

0.0

0.1

0.2
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0.4
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θ

q,
 g

q(theta|y)
g(theta)

Target, proposal, and draws
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Importance sampling

- Proposal does not need to have a higher value everywhere

0

1

2

−4 −2 0 2 4
θ

w

w(theta) = q(theta | y)/g(theta)

Draws and importance weights

E[h(𝜃)] ≈
∑

s wsh(𝜃 (s) )∑
s ws

, where ws =
q(𝜃 (s) )
g(𝜃 (s) )
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Some uses of importance sampling

In general selection of good proposal gets more difficult when the
number of dimensions increase, but there are many special use case
which scale well (e.g. I’ve used IS up to 10k dimensions)

• Fast leave-one-out cross-validation (loo)
• Fast bootstrapping
• Fast prior and likelihood sensitivity analysis (priorsense)
• Conformal Bayesian computation
• Particle filtering
• Improving distributional approximations (e.g Laplace, Pathfinder,

VI)
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IS finite variance and central limit theorem

• If h(𝜃)w and w have finite variance → CLT
• variance goes down as 1/S
• Effective sample size (ESS) takes into account the variability in

the weights

• We would like to have finite variance and CLT
• sometimes these can be guaranteed by construction, e.g., by

choosing g(𝜃) so that w(𝜃) is bounded
• generally not trivial

• Pre-asymptotic and asymptotic behavior can be really different!
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Importance re-sampling

• Using the weighted draws is good

E[h(𝜃)] ≈
∑

s wsh(𝜃 (s) )∑
s ws

• But it can be convenient to obtain draws with equal weights
• resample the draws according to the weights
• some original draws may be included more than once
• loses some information, but now the weights are equal
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Example: Importance sampling in Bioassay
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Normal approximation is discussed more in BDA3 Ch 4
But the normal approximation is not that good here:

Grid sd(LD50) ≈ 0.1, Normal sd(LD50) ≈ .75!

53 / 63



Example: Importance sampling in Bioassay
G

rid

0

10

20

30

−2 0 2 4 6
α

β

0

10

20

30

−2 0 2 4 6
α

β

0

100

200

−0.5 0.0 0.5

LD50 = − α β

co
un

t

N
or

m
al

0

10

20

30

−2 0 2 4 6
α

β

0

10

20

30

−2 0 2 4 6
α

β

0

50

100

150

200

−0.5 0.0 0.5

LD50 = − α β,β>0

co
un

t

IR

0

10

20

30

−2 0 2 4 6
α

β

0

100

200

−0.5 0.0 0.5

LD50 = − α β
co

un
t

53 / 63



Example: Importance sampling in Bioassay
G

rid

0

10

20

30

−2 0 2 4 6
α

β

0

10

20

30

−2 0 2 4 6
α

β

0

100

200

−0.5 0.0 0.5

LD50 = − α β

co
un

t

N
or

m
al

0

10

20

30

−2 0 2 4 6
α

β

0

10

20

30

−2 0 2 4 6
α

β

0

50

100

150

200

−0.5 0.0 0.5

LD50 = − α β,β>0

co
un

t

IR

0

10

20

30

−2 0 2 4 6
α

β

0

100

200

−0.5 0.0 0.5

LD50 = − α β
co

un
t

Grid sd(LD50) ≈ 0.1, IR sd(LD50) ≈ 0.1
53 / 63



Example: Importance sampling in Bioassay
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Example: Importance sampling in Bioassay
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Example: Importance sampling in Bioassay

0.00 0.01 0.02 0.03 0.04
IS weights
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Example: Importance sampling in Bioassay

1/S

0.00 0.01 0.02 0.03 0.04
IS weights

ESS =
1∑S

s=1(w̃(𝜃s))2
, where w̃(𝜃s) = w(𝜃s)/

S∑︁
s′=1

w(𝜃s′)
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s=1(w̃(𝜃s))2
, where w̃(𝜃s) = w(𝜃s)/

S∑︁
s′=1

w(𝜃s′)

BDA3 1st (2013) and 2nd (2014) printing have an error for w̃(𝜃s). The
equation should not have the multiplier S (the normalized weights should
sum to one). Online version is correct. Errata for the book
http://www.stat.columbia.edu/~gelman/book/errata_bda3.txt 57 / 63
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Example: Importance sampling in Bioassay

1/S

0.00 0.01 0.02 0.03 0.04
IS weights

ESS =
1∑S

s=1(w̃(𝜃s))2
, where w̃(𝜃s) = w(𝜃s)/

S∑︁
s′=1

w(𝜃s′)

ESS ≈ 396, (ESS < S = 1000)
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Example: Importance sampling in Bioassay

1/S

0.00 0.01 0.02 0.03 0.04
IS weights

ESS =
1∑S

s=1(w̃(𝜃s))2
, is based on variance of w̃(𝜃s)

ESS ≈ 396

If all w̃(𝜃s) = 1/S, then ESS = 1/(SS−2) = S
If one w̃(𝜃s) = 1, and others 0, then ESS = 1/1 = 1
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Example: Importance sampling in Bioassay
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IS weights

ESS =
1∑S

s=1(w̃(𝜃s))2
, is based on variance of w̃(𝜃s)

ESS ≈ 396
Pareto-k̂ ≈ 0.65, CLT does not hold

with Pareto-smoothing the estimate would be fine if k̂ < 0.7
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Importance sampling leave-one-out cross-validation

• Later in the course you will learn how p(𝜃 |y) can be used as a
proposal distribution for p(𝜃 |y−i)

• which allows fast computation of leave-one-out cross-validation

p(yi |y−i) =
∫

p(yi |𝜃)p(𝜃 |y−i)d𝜃
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Pareto-k̂ diagnostic use cases
• Importance sampling

• leave-one-out cross-validation (Vehtari et al., 2016, 2017;
Bürkner at al, 2020)

• Bayesian stacking (Yao et al., 2018, 2021, 2022)
• leave-future-out cross-validation (Bürkner et al., 2020)
• Bayesian bootstrap (Paananen et al, 2021, online appendix)
• prior and likelihood sensitivity analysis (Kallioinen et al., 2021)
• improving distributional approximations (Yao et al., 2018; Zhang

et al., 2021; Dhaka et al., 2021)
• implicitly adaptive importance sampling (Paananen et al., 2021)

• Stochastic optimization (Dhaka et al., 2020)
• Divergences and gradients in VI (Dhaka et al., 2021)
• MCMC (Paananen et al., 2021)
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Curse of dimensionality

• Number of grid points increases exponentially
• Concentration of the measure, that is, where is the most of the

mass?
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Markov chain Monte Carlo (MCMC)

• Pros
• Markov chain goes where most of the posterior mass is
• Certain MCMC methods scale well to high dimensions

• Cons
• Draws are dependent (affects how many draws are needed)
• Convergence in practical time is not guaranteed

• MCMC methods in this course
• Gibbs: “iterative conditional sampling”
• Metropolis: “random walk in joint distribution”
• Dynamic Hamiltonian Monte Carlo: “state-of-the-art” used in

Stan
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