Chapter 10

- 10.1 Numerical integration (overview)
- 10.2 Distributional approximations (overview, more in Chapter 4 and 13)
- 10.3 Direct simulation and rejection sampling (overview)
- 10.4 Importance sampling
 - used in PSIS-LOO (Lecture 9) and prior sensitivity analysis (Lecture ?)
- 10.5 How many simulation draws are needed?
 - see chapter notes for how many significant digits to report
 - this week focus on independent draws and importance sampling, next week necessary adjustments needed for Markov chain Monte Carlo
- 10.6 Software (can be skipped)
- 10.7 Debugging (can be skipped)

Notation

- In this chapter, generic $p(\theta)$ is used instead of $p(\theta|y)$
- Unnormalized distribution is denoted by $q(\cdot)$
 - $\int q(\theta)d\theta \neq 1$, but finite
 - $q(\cdot) \propto p(\cdot)$
- Proposal distribution is denoted by $g(\cdot)$

- · Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - generate sample of 600 from normal distribution: qr=rnorm(600)
 - calculate joint density given normal: prod(dnorm(qr)) → 0 (underflow)

- · Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - generate sample of 600 from normal distribution: qr=rnorm(600)
 - calculate joint density given normal: prod(dnorm(qr)) → 0 (underflow)
 - see log densities in the next slide

- · Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - generate sample of 600 from normal distribution: qr=rnorm(600)
 - calculate joint density given normal: prod(dnorm(qr)) → 0 (underflow)
 - see log densities in the next slide
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - Laplace and ratio of girl and boy babies
 - pbeta(0.5, 241945, 251527) → 1 (rounding)

- Floating point presentation of numbers. e.g. with 64bits
 - closest value to zero is $\approx 2.2 \cdot 10^{-308}$
 - generate sample of 600 from normal distribution: qr=rnorm(600)
 - calculate joint density given normal: prod(dnorm(qr)) → 0 (underflow)
 - see log densities in the next slide
 - closest value to 1 is $\approx 1 \pm 2.2 \cdot 10^{-16}$
 - Laplace and ratio of girl and boy babies
 - pbeta(0.5, 241945, 251527) → 1 (rounding)
 - pbeta(0.5, 241945, 251527, lower.tail=FALSE) $\approx -1.2\cdot 10^{-42}$ there is more accuracy near 0

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3
 - how many observations we can now handle?

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3
 - how many observations we can now handle?
 - compute exp as late as possible

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute log(exp(a) + exp(b)) = a + log(1 + exp(b - a))

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute log(exp(a) + exp(b)) = a + log(1 + exp(b - a))
 e.g. log(exp(800) + exp(800)) → lnf

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) → -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute log(exp(a) + exp(b)) = a + log(1 + exp(b - a))
 e.g. log(exp(800) + exp(800)) → lnf
 but 800 + log(1 + exp(800 - 800)) ≈ 800.69

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute log(exp(a) + exp(b)) = a + log(1 + exp(b - a))e.g. $log(exp(800) + exp(800)) \rightarrow lnf$ but $800 + log(1 + exp(800 - 800)) \approx 800.69$
 - e.g. in Metropolis-algorithm (Assignment 5) compute the log of ratio of densities using the identity log(a/b) = log(a) log(b)

- Log densities
 - use log densities to avoid over- and underflows in floating point presentation
 - prod(dnorm(qr)) \rightarrow 0 (underflow)
 - sum(dnorm(qr, log=TRUE)) \rightarrow -847.3
 - how many observations we can now handle?
 - compute exp as late as possible
 - e.g. for a > b, compute log(exp(a) + exp(b)) = a + log(1 + exp(b - a))e.g. $log(exp(800) + exp(800)) \rightarrow lnf$ but $800 + log(1 + exp(800 - 800)) \approx 800.69$
 - e.g. in Metropolis-algorithm (Assignment 5) compute the log of ratio of densities using the identity log(a/b) = log(a) - log(b)
 - convenience functions
 - matrixStats::logSumExp(lx) computes log(sum(exp(lx))) using the above rule
 - $\log_{1}(x)$ computes \log_{1+x} accurately also for $|x| \ll 1$
 - expm1(x) computes exp(x) 1 accurately also for $|x| \ll 1$

$$\begin{split} E_{p(\theta|y)}[h(\theta)] &= \int h(\theta) p(\theta|y) d\theta, \\ \text{where} \quad p(\theta|y) &= \frac{p(y|\theta) p(\theta)}{\int p(y|\theta) p(\theta) d\theta} \end{split}$$

$$E_{p(\theta|y)}[h(\theta)] = \int h(\theta)p(\theta|y)d\theta,$$

where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

$$E_{p(\theta|y)}[h(\theta)] = \int h(\theta)p(\theta|y)d\theta,$$

where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta) \propto p(\theta|y)$, for example, in

$$E_{p(\theta|y)}[h(\theta)] = \int h(\theta)p(\theta|y)d\theta,$$

where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta) \propto p(\theta|y)$, for example, in

• Grid (equal spacing) evaluation with self-normalization (lecture 3)

$$E_{p(\theta|y)}[h(\theta)] \approx \frac{\sum_{s=1}^{S} \left[h(\theta^{(s)})q(\theta^{(s)}|y)\right]}{\sum_{s=1}^{S} q(\theta^{(s)}|y)}$$

$$E_{p(\theta|y)}[h(\theta)] = \int h(\theta)p(\theta|y)d\theta,$$

where $p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$

We can easily evaluate $p(y|\theta)p(\theta)$ for any θ , but the integral $\int p(y|\theta)p(\theta)d\theta$ is usually difficult.

We can use the unnormalized posterior $q(\theta|y) = p(y|\theta)p(\theta) \propto p(\theta|y)$, for example, in

ł

• Grid (equal spacing) evaluation with self-normalization (lecture 3)

$$E_{p(\theta|y)}[h(\theta)] \approx \frac{\sum_{s=1}^{S} \left[h(\theta^{(s)})q(\theta^{(s)}|y)\right]}{\sum_{s=1}^{S} q(\theta^{(s)}|y)}$$

Monte Carlo methods which can sample from p(θ^(s)|y) using only q(θ^(s)|y) (each draw has weight 1/S)

$$\mathcal{E}_{p(\theta|y)}[h(\theta)] \approx \frac{1}{S} \sum_{s=1}^{N} h(\theta^{(s)})$$

$$E_{\theta}[h(\theta)] = \int h(\theta) p(\theta|y) d\theta$$

- Conjugate priors and analytic solutions (Ch 1-5, Lec 2–3)
- Grid integration and other quadrature rules (Ch 3, 10, Lec 3–4)
- Independent Monte Carlo, rejection and importance sampling (Ch 10, Lec 4)
- Markov Chain Monte Carlo (Ch 11-12, Lec 5–6)
- Distributional approximations (Laplace, VB, EP) (Ch 4, 13)

• The simplest quadrature integration is grid integration

where $w^{(t)}$ is the normalized probability of a grid cell *t*, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

• The simplest quadrature integration is grid integration

$$\mathbf{E}[\theta] \approx \sum_{t=1}^{T} \theta^{(t)} w^{(t)},$$

where $w^{(t)}$ is the normalized probability of a grid cell *t*, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

In 1D further variations with better accuracy, e.g. trapezoid

• The simplest quadrature integration is grid integration

where $w^{(t)}$ is the normalized probability of a grid cell *t*, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

In 1D further variations with better accuracy, e.g. trapezoid

• Adaptive quadrature methods add evaluation points where needed, e.g., R function integrate()

• The simplest quadrature integration is grid integration

$$\mathbf{E}[\theta] \approx \sum_{t=1}^{T} \theta^{(t)} w^{(t)},$$

where $w^{(t)}$ is the normalized probability of a grid cell *t*, and $\alpha^{(t)}$ and $\beta^{(t)}$ are center locations of grid cells

In 1D further variations with better accuracy, e.g. trapezoid

- Adaptive quadrature methods add evaluation points where needed, e.g., R function integrate()
- In 2D and higher
 - nested quadrature
 - product rules

Grid sampling and curse of dimensionality

- In general the number of evaluations increase exponentially c^D
- if we don't know beforehand where the posterior mass is
 - need to choose wide box for the grid
 - need to have enough grid points to get some of them where essential mass is

Grid sampling and curse of dimensionality

- In general the number of evaluations increase exponentially c^D
- if we don't know beforehand where the posterior mass is
 - need to choose wide box for the grid
 - need to have enough grid points to get some of them where essential mass is
- e.g. 50 or 1000 grid points per dimension, and 10 dimensions
 - \rightarrow 50¹⁰ \approx 1e17 grid points
 - \rightarrow 1000¹⁰ \approx 1e30 grid points
- R and my current laptop can compute density of normal distribution about 50 million times per second
 - \rightarrow evaluation in 1e17 grid points would take 60 years
 - \rightarrow evaluation in 1e30 grid points would take 600 billion years

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann or Ulam in the end of 1940s
 - they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann or Ulam in the end of 1940s
 - they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949
- Bayesians started to have enough cheap computation time in 1990s
 - BUGS project started 1989 (last OpenBUGS release 2014)
 - Gelfand & Smith, 1990

- Used already before computers
 - Buffon (18th century; needles)
 - De Forest, Darwin, Galton (19th century)
 - Pearson (19th century; roulette)
 - Gosset (Student, 1908; hat)
- "Monte Carlo method" term was proposed by Metropolis, von Neumann or Ulam in the end of 1940s
 - they worked together in atomic bomb project
 - Metropolis and Ulam, "The Monte Carlo Method", 1949
- Bayesians started to have enough cheap computation time in 1990s
 - BUGS project started 1989 (last OpenBUGS release 2014)
 - Gelfand & Smith, 1990
 - Stan initial release 2012
 - JAGS, Nimble, Tensorflow probability, PyMC, Pyro, BlackJAX Turing.jl, ...
 - Štrumbelj et al. (2024). Past, Present, and Future of Software for Bayesian Inference. *Statistical Science*, 39(1):46-61. https://doi.org/10.1214/23-STS907

Monte Carlo

- · Simulate draws from the target distribution
 - these draws can be treated as any observations
 - a collection of draws is sample
- Use these draws, for example,
 - to compute means, deviations, quantiles
 - to draw histograms
 - to marginalize
 - etc.

Monte Carlo vs. deterministic

- Monte Carlo = simulation methods
 - evaluation points are selected stochastically (randomly)
- Deterministic methods (e.g. grid)
 - · evaluation points are selected by some deterministic rule
 - good deterministic methods converge faster (need less function evaluations for the same accuracy)

- How many draws or how big sample size?
- If draws are independent
 - usual methods to estimate the uncertainty due to a finite number of observations (finite sample size)
- Markov chain Monte Carlo produces dependent draws
 - requires additional work to estimate the effective sample size
 - next week

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- θ^(s) are independent,
- $p(\theta)$ has finite variance,

then the central limit theorem (CLT) states that the distribution of the expectation approaches normal distribution (see BDA3 Ch 4) with variance σ_{θ}^2/S

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

then the central limit theorem (CLT) states that the distribution of the expectation approaches normal distribution (see BDA3 Ch 4) with variance σ_{θ}^2/S

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

then the central limit theorem (CLT) states that the distribution of the expectation approaches normal distribution (see BDA3 Ch 4) with variance σ_{θ}^2/S

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

then the central limit theorem (CLT) states that the distribution of the expectation approaches normal distribution (see BDA3 Ch 4) with variance σ_{θ}^2/S

rexp(n=10000, rate=1)

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent,
- $p(\theta)$ has finite variance,

then the central limit theorem (CLT) states that the distribution of the expectation approaches normal distribution (see BDA3 Ch 4) with variance σ_{θ}^2/S

cummean(rt(n=10000, df=1))

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent, and
- $p(\theta)$ has finite variance,

then the central limit theorem (CLT) states that the distribution of the expectation approaches normal distribution (see BDA3 Ch 4) with variance σ_{θ}^2/S

• this variance is independent on dimensionality of θ

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent, and
- $p(\theta)$ has finite variance,

- this variance is independent on dimensionality of θ
- See BDA3 Ch 4 for counter-examples for asymptotic normality

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent, and
- $p(\theta)$ has finite variance,

- this variance is independent on dimensionality of $\boldsymbol{\theta}$
- See BDA3 Ch 4 for counter-examples for asymptotic normality
- σ_{θ}/\sqrt{S} is called Monte Carlo standard error (MCSE)

• Expectation of unknown quantity $E(\theta) \approx \frac{1}{S} \sum_{s=1}^{S} \theta^{(s)}$

- If S is big,
- $\theta^{(s)}$ are independent, and
- $p(\theta)$ has finite variance,

- this variance is independent on dimensionality of $\boldsymbol{\theta}$
- See BDA3 Ch 4 for counter-examples for asymptotic normality
- σ_{θ}/\sqrt{S} is called Monte Carlo standard error (MCSE)
- In practice, σ_{θ} will be estimated by

$$\sqrt{1/(S-1)\sum_{s=1}^{S}(\theta^{(s)} - E(\theta))^2}$$

Central limit theorem

- Valid also when $p(\theta)$ discrete
 - the distribution of mean is discrete, but the comparison to continuous normal is done using cumalative distribution functions

Central limit theorem

- Valid also when $p(\theta)$ discrete
 - the distribution of mean is discrete, but the comparison to continuous normal is done using cumalative distribution functions
- 3Blue1Brown YouTube videos with nice visualisations
 - CLT with discrete distributions: But what is the Central Limit Theorem? https://www.youtube.com/watch?v=zeJD6dqJ5lo
 - CLT with continuous distributions: Convolutions | Why X+Y in probability is a beautiful mess https://www.youtube.com/watch?v=IaSGqQa5O-M

Average temperature in June, July, and August at Kilpisjärvi, Finland in 1952–2013

Average temperature in June, July, and August at Kilpisjärvi, Finland in 1952–2013

Posterior of temperature change

17/63

Posterior of temperature change

Tail quantiles are more difficult to estimate

See Vehtari, Gelman, Simpson, Carpenter, & Bürkner (2021) for quantile MCSE computation.

Posterior probability

$$p(\theta \in A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} \in A)$$

where $I(\theta^{(s)} \in A) = 1$ if $\theta^{(s)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - use beta CDF, or normal approximation
 - \rightarrow var $(I(\cdot)) = p(1-p)S$ (Appendix A, p. 579)
 - \rightarrow standard deviation of *p* is $\sqrt{p(1-p)/S}$

Posterior probability

$$p(\theta \in A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} \in A)$$

where $I(\theta^{(s)} \in A) = 1$ if $\theta^{(s)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - use beta CDF, or normal approximation
 - \rightarrow var $(I(\cdot)) = p(1-p)S$ (Appendix A, p. 579)
 - \rightarrow standard deviation of *p* is $\sqrt{p(1-p)/S}$
- if S = 100 and we observe $\frac{1}{S} \sum_{l} I(\theta^{(s)} \in A) = 0.05$, then $\sqrt{p(1-p)/S} \approx 0.02$

i.e. accuracy is about 4% units

or from quantiles of beta distribution the range is (0.02, 0.1)

Posterior probability

$$p(\theta \in A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} \in A)$$

where $I(\theta^{(s)} \in A) = 1$ if $\theta^{(s)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - use beta CDF, or normal approximation
 - \rightarrow var $(I(\cdot)) = p(1-p)S$ (Appendix A, p. 579)
 - \rightarrow standard deviation of *p* is $\sqrt{p(1-p)/S}$
- if S = 100 and we observe $\frac{1}{S} \sum_{l} I(\theta^{(s)} \in A) = 0.05$, then $\sqrt{p(1-p)/S} \approx 0.02$

i.e. accuracy is about 4% units

or from quantiles of beta distribution the range is (0.02, 0.1)

• S = 2000 draws needed for 1% unit accuracy

Posterior probability

$$p(\theta \in A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} \in A)$$

where $I(\theta^{(s)} \in A) = 1$ if $\theta^{(s)} \in A$

- $I(\cdot)$ is binomially distributed as $p(\theta \in A)$
 - use beta CDF, or normal approximation
 - \rightarrow var $(I(\cdot)) = p(1-p)S$ (Appendix A, p. 579)
 - \rightarrow standard deviation of *p* is $\sqrt{p(1-p)/S}$
- if S = 100 and we observe $\frac{1}{S} \sum_{l} I(\theta^{(s)} \in A) = 0.05$, then $\sqrt{p(1-p)/S} \approx 0.02$

i.e. accuracy is about 4% units

or from quantiles of beta distribution the range is (0.02, 0.1)

- *S* = 2000 draws needed for 1% unit accuracy
- To estimate small probabilities, a large number of draws is needed
 - to be able to estimate small *p*, need to get draws with θ^(l) ∈ A, which in expectation requires S ≫ 1/p

From probabilities to quantiles

- Probability: $p(\theta < A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} < A)$
- 5%-quantile: Find A so that $p(\theta < A) = 0.05$

From probabilities to quantiles

- Probability: $p(\theta < A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} < A)$
- 5%-quantile: Find A so that $p(\theta < A) = 0.05$
- If S = 1000 and uncertainty interval for 5% probability is (0.04, 0.06) (see earlier slide), we can find uncertainty interval (A^-, A^+) , so that $p(\theta < A^-) = 0.04$, and $p(\theta < A^+) = 0.06$
From probabilities to quantiles

- Probability: $p(\theta < A) \approx \frac{1}{S} \sum_{l} I(\theta^{(s)} < A)$
- 5%-quantile: Find A so that $p(\theta < A) = 0.05$
- If S = 1000 and uncertainty interval for 5% probability is (0.04, 0.06) (see earlier slide), we can find uncertainty interval (A^-, A^+) , so that $p(\theta < A^-) = 0.04$, and $p(\theta < A^+) = 0.06$
 - we can summarise this interval by transforming it to MCSE
 - see examples in https://avehtari.github.io/casestudies/Digits/digits.html
 - if interested, see algorithm details in Vehtari, Gelman, Simpson, Carpenter, & Bürkner (2021), doi.org/10.1214/20-BA1221.

Posterior mean and 5% and 95% quantiles:

Posterior mean and 5% and 95% quantiles:

The corresponding MCSE estimates:

Posterior mean and 5% and 95% quantiles:

The corresponding MCSE estimates:

These _mcse functions are for MCMC draws, but if the number of draws is big (≥ 1000), then these are accurate enough for independent MC draws, too

Posterior probability and the corresponding MCSE estimate:

• Too many digits make reading of the results slower and give false impression of the accuracy

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - · check what is the Monte Carlo standard error

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- Show meaningful digits given the posterior uncertainty

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)
- Example: The probability that temp increase is positive

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)
- Example: The probability that temp increase is positive
 - 0.9960000 (NO!)

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)
- Example: The probability that temp increase is positive
 - 0.9960000 (NO!)
 - 1.00 (depends on the context)

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)
- Example: The probability that temp increase is positive
 - 0.9960000 (NO!)
 - 1.00 (depends on the context)
 - With 4000 draws MCSE ≈ 0.002. We could report that probability is very likely larger than 0.99, or sample more to justify reporting three digits

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)
- Example: The probability that temp increase is positive
 - 0.9960000 (NO!)
 - 1.00 (depends on the context)
 - With 4000 draws MCSE ≈ 0.002. We could report that probability is very likely larger than 0.99, or sample more to justify reporting three digits
 - For probabilities close to 0 or 1, consider also when the model assumption justify certain accuracy

- Too many digits make reading of the results slower and give false impression of the accuracy
- Don't show digits which are just random noise
 - check what is the Monte Carlo standard error
- · Show meaningful digits given the posterior uncertainty
- Example: The mean and 90% central posterior interval for temperature increase C°/century based on posterior draws
 - 2.050774 and [0.7472868 3.3017524] (NO!)
 - 2.1 and [0.7 3.3]
 - 2 and [1 3] (depends on the context)
- Example: The probability that temp increase is positive
 - 0.9960000 (NO!)
 - 1.00 (depends on the context)
 - With 4000 draws MCSE ≈ 0.002. We could report that probability is very likely larger than 0.99, or sample more to justify reporting three digits
 - For probabilities close to 0 or 1, consider also when the model assumption justify certain accuracy

See also https://users.aalto.fi/~ave/casestudies/Digits/digits.html 24/63

More data

• The analysis I just showed used data from 1952–2013

More data

- The analysis I just showed used data from 1952-2013
- With data data from 1952-2024
 - The probability that temp increase is positive: 0.99975 ± 0.00025 (90% interval),

which can be reported as more than 99.95% probability

• With data from other locations we would be even more certain

More data

- The analysis I just showed used data from 1952-2013
- With data data from 1952–2024
 - The probability that temp increase is positive: 0.99975 ± 0.00025 (90% interval),

which can be reported as more than 99.95% probability

- With data from other locations we would be even more certain
- Summer 2023 was the second hottest in the recorded history
- Summer 2024 was the hottest in the recorded history

- Less draws needed with
 - deterministic methods
 - marginalization (Rao-Blackwellization)
 - variance reduction methods, such, control variates

- Less draws needed with
 - deterministic methods
 - marginalization (Rao-Blackwellization)
 - variance reduction methods, such, control variates
- Number of independent draws needed doesn't depend on the number of dimensions
 - but it may be difficult to obtain independent draws in high dimensional case

- Less draws needed with
 - deterministic methods
 - marginalization (Rao-Blackwellization)
 - variance reduction methods, such, control variates
- Number of independent draws needed doesn't depend on the number of dimensions
 - but it may be difficult to obtain independent draws in high dimensional case
- Some algorithms are less efficient
 - Compute MCSE using *effective sample size (ESS)* instead of the number of draws *S*
 - Usually ESS< S

- Less draws needed with
 - deterministic methods
 - marginalization (Rao-Blackwellization)
 - variance reduction methods, such, control variates
- Number of independent draws needed doesn't depend on the number of dimensions
 - but it may be difficult to obtain independent draws in high dimensional case
- Some algorithms are less efficient
 - Compute MCSE using *effective sample size (ESS)* instead of the number of draws *S*
 - Usually ESS< S
- How to check if a distribution has finite mean and variance?
 - Pareto- \hat{k} diagnostic

Simple example: $x \sim N$, t_4 , t_2 , t_1 , $t_{1/2}$

- N has all moments finite
- t_{ν} has less than ν fractional moments

Simple example: $x \sim N$

Simple example: $x \sim N$

Simple example: $x \sim t_4$, t_2 , t_1 , $t_{1/2}$

Simple example: $x \sim t_4$, t_2 , t_1 , $t_{1/2}$

Simple example: $x \sim t_4$, t_2 , t_1 , $t_{1/2}$

Simple example: $x \sim t_4$, t_2 , t_1 , $t_{1/2}$

Simple example: $x \sim t_4$, t_2 , t_1 , $t_{1/2}$

Simple example: $x \sim t_4$, t_2 , t_1 , $t_{1/2}$

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

Pickands (1975): many distributions have tail (x > u) that is well approximated with Generalized Pareto distribution (GPD)

Pareto- \hat{k} diagnostic

GPD has a shape parameter k, and 1/k finite fractional moments

Pareto- \hat{k} diagnostic: $x \sim N$

Pareto- \hat{k} diagnostic: $x \sim t_4$

Pareto- \hat{k} diagnostic: $x \sim t_2$

Pareto- \hat{k} diagnostic: $x \sim t_1$

Pareto- \hat{k} diagnostic: $x \sim t_{1/2}$

Pareto- \hat{k} diagnostic is pre-asymptotic diagnostic

Thick tailed but truncated distribution

We can make estimates only based on what we have observed.

Pareto- \hat{k} diagnostic: thick-tailed bounded distribution

Thick-tailed bounded distributions in practice

• Thick-tailed distributions are common in importance sampling and variational divergence estimation

Pareto- \hat{k} in posterior package

> drt |> summarise_draws(mean, sd, mcse_mean)

variable	mean	sd	mcse_mean
xn	0.007	0.99	0.01
xt3	0.004	1.66	0.02
xt2_5	0.002	2.01	0.02
xt2	-0.008	3.00	0.03
xt1_5	-0.067	8.14	0.08
xt1	-1.57	122.	1.21

Pareto- \hat{k} in posterior package

> drt |> summarise_draws(mean, sd, mcse_mean, pareto_khat)

variable	mean	sd	<pre>mcse_mean</pre>	pareto_khat
xn	0.007	0.99	0.01	-0.02
xt3	0.004	1.66	0.02	0.36
xt2_5	0.002	2.01	0.02	0.43
xt2	-0.008	3.00	0.03	0.53
xt1_5	-0.067	8.14	0.08	0.72
xt1	-1.57	122.	1.21	1.08

- To check posterior of any quantity of interest
 - if high k̂, maybe use some other summary than mean, e.g., quantiles

- To check posterior of any quantity of interest
 - if high \hat{k} , maybe use some other summary than mean, e.g., quantiles
- Especially useful inside algorithms that rely on expectations
 - other summaries can't be used
 - automated diagnostic as in PSIS-LOO (Lecture 9) and priorsense (Lecture ?)

- To check posterior of any quantity of interest
 - if high \hat{k} , maybe use some other summary than mean, e.g., quantiles
- Especially useful inside algorithms that rely on expectations
 - other summaries can't be used
 - automated diagnostic as in PSIS-LOO (Lecture 9) and priorsense (Lecture ?)
- \hat{k} estimate has it's own variation given finite sample size
 - e.g. if close to 0.5 more draws help to improve to decide whether k < 0.5

- To check posterior of any quantity of interest
 - if high \hat{k} , maybe use some other summary than mean, e.g., quantiles
- Especially useful inside algorithms that rely on expectations
 - other summaries can't be used
 - automated diagnostic as in PSIS-LOO (Lecture 9) and priorsense (Lecture ?)
- \hat{k} estimate has it's own variation given finite sample size
 - e.g. if close to 0.5 more draws help to improve to decide whether k < 0.5
- Pareto-smoothing improves the mean estimate
 - reliable mean and MCSE estimates when Pareto-k < 0.7
 - required minimum sample size and convergence rate estimates for different values of *k*
 - more on lecture 9

Direct simulation

- Produces independent draws
 - Using analytic transformations of uniform random numbers (e.g. appendix A)
 - factorization
 - numerical inverse-CDF
- · Problem: restricted to limited set of models

Random number generators

- Good pseudo random number generators are sufficient for Bayesian inference
 - pseudo random generator uses deterministic algorithm to produce a sequence which is difficult to make difference from truly random sequence
 - modern software used for statistical analysis have good pseudo RNGs

Direct simulation: Example

• Box-Muller -method: If U_1 and U_2 are independent draws from distribution U(0, 1), and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$
$$X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$$

then X_1 and X_2 are independent draws from the distribution N(0, 1)

Direct simulation: Example

• Box-Muller -method:

If U_1 and U_2 are independent draws from distribution $\mathrm{U}(0,1)$, and

$$X_1 = \sqrt{-2\log(U_1)}\cos(2\pi U_2)$$
$$X_2 = \sqrt{-2\log(U_1)}\sin(2\pi U_2)$$

then X_1 and X_2 are independent draws from the distribution N(0, 1)

- not the fastest method due to trigonometric computations
- for normal distribution more than ten different methods
- e.g. R uses inverse-CDF

Indirect sampling

- Rejection sampling
- Importance sampling
- Markov chain Monte Carlo (next week)

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \leq 1$
- Draw from the proposal and accept with probability $q(\theta|y)/Mg(\theta)$

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \leq 1$
- Draw from the proposal and accept with probability $q(\theta|\mathbf{y})/Mg(\theta)$

Accepted • Rejected - - Mg(theta) - q(theta|y)

- Proposal forms envelope over the target distribution $q(\theta|y)/Mg(\theta) \leq 1$
- Draw from the proposal and accept with probability $q(\theta|\mathbf{y})/Mg(\theta)$
- Common for truncated distributions

Accepted • Rejected - - Mg(theta) - q(theta|y)

- The effective sample size (ESS) is the number of accepted draws
 - with bad proposal distribution may require a lot of trials
 - selection of good proposal gets very difficult when the number of dimensions increase
 - reliable diagnostics and thus can be a useful part

Importance sampling

- Proposal does not need to have a higher value everywhere

Importance sampling

- Proposal does not need to have a higher value everywhere

Importance sampling

- Proposal does not need to have a higher value everywhere

Some uses of importance sampling

In general selection of good proposal gets more difficult when the number of dimensions increase, but there are many special use case which scale well (e.g. I've used IS up to 10k dimensions)

Some uses of importance sampling

In general selection of good proposal gets more difficult when the number of dimensions increase, but there are many special use case which scale well (e.g. I've used IS up to 10k dimensions)

- Fast leave-one-out cross-validation (loo)
- Fast bootstrapping
- Fast prior and likelihood sensitivity analysis (priorsense)
- Conformal Bayesian computation
- Particle filtering
- Improving distributional approximations (e.g Laplace, Pathfinder, VI)

IS finite variance and central limit theorem

- If $h(\theta)w$ and w have finite variance \rightarrow CLT
 - variance goes down as 1/S
 - Effective sample size (ESS) takes into account the variability in the weights

IS finite variance and central limit theorem

- If $h(\theta)w$ and w have finite variance \rightarrow CLT
 - variance goes down as 1/S
 - Effective sample size (ESS) takes into account the variability in the weights
- We would like to have finite variance and CLT
 - sometimes these can be guaranteed by construction, e.g., by choosing g(θ) so that w(θ) is bounded
 - generally not trivial

IS finite variance and central limit theorem

- If $h(\theta)w$ and w have finite variance \rightarrow CLT
 - variance goes down as 1/S
 - Effective sample size (ESS) takes into account the variability in the weights
- · We would like to have finite variance and CLT
 - sometimes these can be guaranteed by construction, e.g., by choosing g(θ) so that w(θ) is bounded
 - generally not trivial
- Pre-asymptotic and asymptotic behavior can be really different!

Importance re-sampling

Using the weighted draws is good

$$\mathsf{E}[h(\theta)] \approx \frac{\sum_{s} w_{s} h(\theta^{(s)})}{\sum_{s} w_{s}}$$

Importance re-sampling

• Using the weighted draws is good

$$\mathbf{E}[h(\theta)] \approx \frac{\sum_{s} w_{s} h(\theta^{(s)})}{\sum_{s} w_{s}}$$

- But it can be convenient to obtain draws with equal weights
 - resample the draws according to the weights
 - some original draws may be included more than once
 - · loses some information, but now the weights are equal

Normal approximation is discussed more in BDA3 Ch 4

Normal approximation is discussed more in BDA3 Ch 4 But the normal approximation is not that good here: Grid sd(LD50) \approx 0.1, Normal sd(LD50) \approx .75!

Grid sd(LD50) \approx 0.1, IR sd(LD50) \approx 0.1

BDA3 1st (2013) and 2nd (2014) printing have an error for $\tilde{w}(\theta^s)$. The equation should not have the multiplier S (the normalized weights should sum to one). Online version is correct. Errata for the book http://www.stat.columbia.edu/~gelman/book/errata_bda3.txt

Importance sampling leave-one-out cross-validation

 Later in the course you will learn how p(θ|y) can be used as a proposal distribution for p(θ|y_{-i})

which allows fast computation of leave-one-out cross-validation

$$p(y_i|y_{-i}) = \int p(y_i|\theta)p(\theta|y_{-i})d\theta$$

Pareto- \hat{k} diagnostic use cases

- Importance sampling
 - leave-one-out cross-validation (Vehtari et al., 2016, 2017; Bürkner at al, 2020)
 - Bayesian stacking (Yao et al., 2018, 2021, 2022)
 - leave-future-out cross-validation (Bürkner et al., 2020)
 - Bayesian bootstrap (Paananen et al, 2021, online appendix)
 - prior and likelihood sensitivity analysis (Kallioinen et al., 2021)
 - improving distributional approximations (Yao et al., 2018; Zhang et al., 2021; Dhaka et al., 2021)
 - implicitly adaptive importance sampling (Paananen et al., 2021)
- Stochastic optimization (Dhaka et al., 2020)
- Divergences and gradients in VI (Dhaka et al., 2021)
- MCMC (Paananen et al., 2021)

Curse of dimensionality

- Number of grid points increases exponentially
- Concentration of the measure, that is, where is the most of the mass?

Markov chain Monte Carlo (MCMC)

- Pros
 - · Markov chain goes where most of the posterior mass is
 - Certain MCMC methods scale well to high dimensions
- Cons
 - Draws are dependent (affects how many draws are needed)
 - Convergence in practical time is not guaranteed
- MCMC methods in this course
 - Gibbs: "iterative conditional sampling"
 - Metropolis: "random walk in joint distribution"
 - Dynamic Hamiltonian Monte Carlo: "state-of-the-art" used in Stan