
Outline of Lecture 2

• Binomial model is the simplest model
• useful to introduce observation model, likelihood, posterior, prior,

integration, posterior summaries
• very commonly used as a building block
• examples:

• coin tossing
• chips from bag
• COVID tests and vaccines
• classification / logistic regression



Outline of Chapter 2

• 2.1 Binomial model (repeated experiment with binary outcome)
• 2.2 Posterior as compromise between data and prior information
• 2.3 Posterior summaries
• 2.4 Informative prior distributions (skip exponential families and

sufficient statistics)
• 2.5 Gaussian model with known variance
• 2.6 Other single parameter models

• the normal distribution with known mean but unknown variance
is the most important

• glance through Poisson and exponential
• 2.7 glance through this example, which illustrates benefits of

prior information, no need to read all the details (it’s quite long
example)

• 2.8–2.9 Noninformative and weakly informative priors



Binomial: known \

• Probability of event 1 in trial is \

• Probability of event 2 in trial is 1 − \

• Probability of several events in independent trials is e.g.
\\ (1 − \)\ (1 − \) (1 − \) . . .

• If there are n trials and we don’t care about the order of the
events, then the probability that event 1 happens y times is

p(y|\, n) =
(
n
y

)
\y(1 − \)n−y
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Binomial: what if y = 6?

• Observation model (function of y, discrete)

p(y|\, n) =
(
n
y

)
\y(1 − \)n−y
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Binomial: unknown \ and y = 6

• Likelihood (function of \, continuous)

p(y|\, n) =
(
n
y

)
\y(1 − \)n−y
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Likelihood given y=6, n=10

we can compute the value for any \ , but in practice can compute only for finite values
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Likelihood given y=6, n=10

with sufficient many evaluations, linearly interpolated plot looks smooth
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looks smooth, and we’ll get back to later to computational cost issues



Binomial: unknown \ and y = 6
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Likelihood given y=6, n=10

likelihood function describes uncertainty, but is not normalized distribution
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integrate(function(theta) dbinom(6, 10, theta), 0, 1) ≈ 0.09 ≠ 1



Binomial posterior

• Joint distribution p(\, y|n)
• Observation model as a function of y: p(y|\, n) ∝ p(\, y|n)
• Likelihood as a function of \: p(y|\, n) ∝ p(\, y|n)

• Posterior with Bayes rule (function of \, continuous)

p(\ |y, n) = p(y|\, n)p(\ |n)
p(y|n)

where p(y|n) =
∫

p(y|\, n)p(\ |n)d\

• Start with uniform prior

p(\ |n) = p(\ |M) = 1, when 0 ≤ \ ≤ 1
• Then

p(\ |y, n) = p(y|\, n)
p(y|n) =

(n
y
)
\y(1 − \)n−y∫ 1

0
(n
y
)
\y(1 − \)n−yd\

=
1
Z
\y(1 − \)n−y
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Binomial: unknown \

• Normalization term Z (constant given y)

Z = p(y|n) =
∫ 1

0
\y(1 − \)n−yd\ =

Γ(y + 1)Γ(n − y + 1)
Γ(n + 2)

• Evaluate with y = 6, n = 10
y<-6;n<-10;

integrate(function(theta) thetaˆy*(1-theta)ˆ(n-y), 0, 1) ≈ 0.0004329

gamma(6+1)*gamma(10-6+1)/gamma(10+2) ≈ 0.0004329

usually computed via log Γ( ·) due to the limitations of floating point presentation
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Binomial: unknown \

• Posterior is

p(\ |y, n) = Γ(n + 2)
Γ(y + 1)Γ(n − y + 1) \

y(1 − \)n−y,

which is called Beta distribution

\ |y, n ∼ Beta(y + 1, n − y + 1)
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p( θ | y=6, n=10, M=binom) + unif. prior)
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Binomial: computation

• R
• density dbeta
• CDF pbeta
• quantile qbeta
• random number rbeta

• Python
• from scipy.stats import beta
• density beta.pdf
• CDF beta.cdf
• prctile beta.ppf
• random number beta.rvs



Binomial: computation

• Beta CDF not trivial to compute
• For example, pbeta in R uses a continued fraction with

weighting factors and asymptotic expansion
• Laplace developed normal approximation (Laplace

approximation), because he didn’t know how to compute Beta
CDF
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Placenta previa

• Probability of a girl birth given placenta previa (BDA3 p. 37)
• 437 girls and 543 boys have been observed
• is the ratio 0.445 different from the population average 0.485?

0.40 0.45 0.50

theta

95% posterior interval

Uniform prior −> Posterior is Beta(438,544)
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Predictive distribution – Effect of integration

• Predictive distribution for new ỹ (discrete)

p(ỹ = 1|y, n,M) =
∫ 1

0

p(ỹ = 1|\, y, n,M)

p(\ |y, n,M)d\

=

∫ 1

0
\p(\ |y, n,M)d\

= E[\ |y]
• With uniform prior

E[\ |y] = y + 1
n + 2

• Extreme cases

p(ỹ = 1|y = 0, n,M) = 1
n + 2

p(ỹ = 1|y = n, n,M) = n + 1
n + 2

• cf. maximum likelihood
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p(ỹ = 1|y, n,M) =
∫ 1

0
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Benefits of integration

Example: n = 10, y = 10
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Posterior of  θ  of Binomial model with y=10, n=10



Predictive distribution

• Prior predictive distribution for new ỹ (discrete)

p(ỹ = 1|M) =
∫ 1

0
p(ỹ = 1|\,M)p(\ |M)d\

• Posterior predictive distribution for new ỹ (discrete)

p(ỹ = 1|y, n,M) =
∫ 1

0
p(ỹ = 1|\, y, n,M)p(\ |y, n,M)d\



Left handedness

• If we would like to provide scissors for all students, how many
left handed scissors we would need?

• related to consumer behavior analysis and A/B testing



Left handedness
• What we know and don’t know

• N = L + R is the total number of students in the lecture hall, N is
known in the beginning

• L and R are the number of left and right handed students, not
known before we start asking

• n = l + r is the number of students we have asked
• l and r are the numbers of left and right handed students from

the students we asked
• we also know that l ≤ L ≤ (N − r) and r ≤ R ≤ (N − l)

• After observing n students with l left handed, what we know
about L?

• We define L = l + l̃, where l̃ is the unobserved number of left
handed students among those who we did not yet ask

• Posterior distribution for \ is Beta(𝛼 + l, 𝛽 + r)
• Posterior predictive distribution for l̃ is

Beta-Binomial(l̃|N − n, 𝛼 + l, 𝛽 + r) =∫ 1
0 Bin(l̃|N − n, \) Beta(\ |𝛼 + l, 𝛽 + r)d\

• Demo: https://huggingface.co/spaces/Madhav/Handedness

https://huggingface.co/spaces/Madhav/Handedness
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Justification for uniform prior

• p(\ |M) = 1 if
1) we want the prior predictive distribution to be uniform

p(y|n,M) = 1
n + 1

, y = 0, . . . , n

• nice justification as it is based on observables y and n

2) we think all values of \ are equally likely
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Priors

• Conjugate prior (BDA3 p. 35)
• Noninformative prior (BDA3 p. 51)
• Proper and improper prior (BDA3 p. 52)
• Weakly informative prior (BDA3 p. 55)
• Informative prior (BDA3 p. 55)
• Prior sensitivity (BDA3 p. 38)



Conjugate prior

• Prior and posterior have the same form
• only for exponential family distributions (plus for some irregular

cases)
• Used to be important for computational reasons, and still

sometimes used for special models to allow partial analytic
marginalization (Ch 3)

• with dynamic Hamiltonian Monte Carlo used e.g. in Stan no
computational benefit



Beta prior for Binomial model

• Prior
Beta(\ |𝛼, 𝛽) ∝ \𝛼−1(1 − \)𝛽−1

• Posterior
p(\ |y, n,M) ∝ \y(1 − \)n−y\𝛼−1(1 − \)𝛽−1

∝ \y+𝛼−1(1 − \)n−y+𝛽−1

after normalization
p(\ |y, n,M) = Beta(\ |𝛼 + y, 𝛽 + n − y)

• (𝛼 − 1) and (𝛽 − 1) can be considered to be the number of prior
observations

• Uniform prior when 𝛼 = 1 and 𝛽 = 1



Beta prior for Binomial model

• Prior
Beta(\ |𝛼, 𝛽) ∝ \𝛼−1(1 − \)𝛽−1

• Posterior
p(\ |y, n,M) ∝ \y(1 − \)n−y\𝛼−1(1 − \)𝛽−1

∝ \y+𝛼−1(1 − \)n−y+𝛽−1

after normalization
p(\ |y, n,M) = Beta(\ |𝛼 + y, 𝛽 + n − y)

• (𝛼 − 1) and (𝛽 − 1) can be considered to be the number of prior
observations

• Uniform prior when 𝛼 = 1 and 𝛽 = 1



Beta prior for Binomial model

• Prior
Beta(\ |𝛼, 𝛽) ∝ \𝛼−1(1 − \)𝛽−1

• Posterior
p(\ |y, n,M) ∝ \y(1 − \)n−y\𝛼−1(1 − \)𝛽−1

∝ \y+𝛼−1(1 − \)n−y+𝛽−1

after normalization
p(\ |y, n,M) = Beta(\ |𝛼 + y, 𝛽 + n − y)

• (𝛼 − 1) and (𝛽 − 1) can be considered to be the number of prior
observations

• Uniform prior when 𝛼 = 1 and 𝛽 = 1



Beta prior for Binomial model

• Prior
Beta(\ |𝛼, 𝛽) ∝ \𝛼−1(1 − \)𝛽−1

• Posterior
p(\ |y, n,M) ∝ \y(1 − \)n−y\𝛼−1(1 − \)𝛽−1

∝ \y+𝛼−1(1 − \)n−y+𝛽−1

after normalization
p(\ |y, n,M) = Beta(\ |𝛼 + y, 𝛽 + n − y)

• (𝛼 − 1) and (𝛽 − 1) can be considered to be the number of prior
observations

• Uniform prior when 𝛼 = 1 and 𝛽 = 1



Benefits of integration and prior
Example: n = 10, y = 10 - uniform vs Beta(2,2) prior
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Beta prior for Binomial model

• Posterior
p(\ |y, n,M) = Beta(\ |𝛼 + y, 𝛽 + n − y)

• Posterior mean

E[\ |y] = 𝛼 + y
𝛼 + 𝛽 + n

• combination prior and likelihood information
• when n → ∞, E[\ |y] → y/n

• Posterior variance

Var[\ |y] = E[\ |y] (1 − E[\ |y])
𝛼 + 𝛽 + n + 1

• decreases when n increases
• when n → ∞, Var[\ |y] → 0
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Noninformative prior, proper and improper prior

• Vague, flat, diffuse, or noninformative
• try to “to let the data speak for themselves”
• flat is not non-informative
• flat can be stupid
• making prior flat somewhere can make it non-flat somewhere

else
• Proper prior has

∫
p(\) = 1

• Improper prior density doesn’t have a finite integral
• the posterior can still sometimes be proper



Weakly informative priors

• Weakly informative priors produce computationally better
behaving posteriors

• quite often there’s at least some knowledge about the scale
• useful also if there’s more information from previous

observations, but not certain how well that information is
applicable in a new case uncertainty

• Construction
• Start with some version of a noninformative prior distribution and

then add enough information so that inferences are constrained
to be reasonable.

• Start with a strong, highly informative prior and broaden it to
account for uncertainty in one’s prior beliefs and in the
applicability of any historically based prior distribution to new
data.

• Stan team prior choice recommendations https://github.com/
stan-dev/stan/wiki/Prior-Choice-Recommendations

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations


Weakly informative priors

• Weakly informative priors produce computationally better
behaving posteriors

• quite often there’s at least some knowledge about the scale
• useful also if there’s more information from previous

observations, but not certain how well that information is
applicable in a new case uncertainty

• Construction
• Start with some version of a noninformative prior distribution and

then add enough information so that inferences are constrained
to be reasonable.

• Start with a strong, highly informative prior and broaden it to
account for uncertainty in one’s prior beliefs and in the
applicability of any historically based prior distribution to new
data.

• Stan team prior choice recommendations https://github.com/
stan-dev/stan/wiki/Prior-Choice-Recommendations

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations


Informative prior for left handedness

• Papadatou-Pastou et al. (2020). Human handedness: A
meta-analysis. Psychological Bulletin, 146(6), 481–524.
https://doi.org/10.1037/bul0000229

• totaling 2 396 170 individuals
• varies between 9.3% and 18.1%, depending on how

handedness is measured
• varies between countries and in time

https://doi.org/10.1037/bul0000229
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Benefits of integration and prior

• Left handed simulation with 30 left handed and 300 total
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Benefits of integration and prior

• Left handed simulation with 30 left handed and 300 total
• repeated 10 000 times
• average log predictive density for 30 left handed in total
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Effect of incorrect priors?

• Introduce bias, but often still produce smaller estimation error
because the variance is reduced

• bias-variance tradeoff
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Structural information in predicting future
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Structural information – Prophet by Facebook
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Binomial: unknown \

Sometimes conditioning on the model M is explicitly shown
• Posterior with Bayes rule (function of \, continuous)

p(\ |y, n,M) = p(y|\, n,M)p(\ |n,M)
p(y|n,M)

where p(y|n,M) =
∫

p(y|\, n,M)p(\ |n,M)d\

• makes it more clear that likelihood and prior are both part of the
model

• makes it more clear that there is no absolute probability for
p(y|n), but it depends on the model M

• in case of two models, we can evaluate marginal likelihoods
p(y|n,M1) and p(y|n,M2) (more in Ch 7)

• usually dropped to make the notation more concise
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Sufficient statistics

• The quantity t(y) is said to be a sufficient statistic for \, because
the likelihood for \ depends on the data y only through the value
of t(y).

• For binomial model the sufficient statistics are y and n (the order
doesn’t matter)
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Posterior visualization and inference demos

• demo2_3: Simulate samples from Beta(438,544), and draw a
histogram of \ with quantiles.

theta

phi

0.40 0.44 0.48

1.0 1.2 1.4 1.6



Posterior visualization and inference demos

• demo2_4: Compute posterior distribution in a grid.

Non−conjugate posterior

Non−conjugate prior

Posterior with uniform prior

0.35 0.40 0.45 0.50 0.55 0.60



Posterior visualization and inference demos

• demo2_4: Sample using the inverse-cdf method.

0.35 0.40 0.45 0.50 0.55 0.60

Non−conjugate posterior

0.35 0.40 0.45 0.50 0.55 0.60

Posterior−cdf

0.35 0.40 0.45 0.50 0.55 0.60

Histogram of posterior samples



Algae
Assignment

Algae status is monitored in 274 sites at Finnish lakes and rivers.
The observations for the 2008 algae status at each site are
presented in file algae.mat (’0’: no algae, ’1’: algae present). Let 𝜋
be the probability of a monitoring site having detectable blue-green
algae levels.

• Use a binomial model for observations and a beta(2,10) prior.
• What can you say about the value of the unknown 𝜋?
• Experiment how the result changes if you change the prior.



Binomial model with \ = f (x)

• Next week you learn how the binomial model parameter \ can
depend on some other measurement x
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Normal / Gaussian

• Observations y real valued
• Mean \ and variance 𝜎2 (or deviation 𝜎)

This week assume 𝜎2 known (preparing for the next week)

p(y|\) = 1
√

2𝜋𝜎
exp

(
− 1

2𝜎2 (y − \)2
)

y ∼ N(\, 𝜎2)

−4 −2 0 2 4



Reasons to use Normal distribution

• Normal distribution often justified based on central limit theorem
• More often used due to the computational convenience or

tradition



Central limit theorem*

• De Moivre, Laplace, Gauss, Chebysev, Liapounov, Markov, et al.
• Given certain conditions, distribution of sum (and mean) of

random variables approach Gaussian distribution as n → ∞
• Problems

• does not hold for distributions with infinite variance, e.g., Cauchy

• may require large n,
e.g. Binomial, when \ close to 0 or 1

• does not hold if one the variables has much larger scale
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Normal distribution - conjugate prior for \

• Assume 𝜎2 known

Likelihood p(y|\) ∝ exp
(
− 1

2𝜎2 (y − \)2
)

Prior p(\) ∝ exp

(
− 1

2𝜏2
0
(\ − `0)2

)

exp(a) exp(b) = exp(a + b)

Posterior p(\ |y) ∝ exp

(
−1

2

[
(y − \)2

𝜎2 + (\ − `0)2

𝜏2
0

])
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Normal distribution - conjugate prior for \

• Posterior (highly recommended to do BDA 3 Ex 2.14a)

p(\ |y) ∝ exp

(
−1

2

[
(y − \)2

𝜎2 + (\ − `0)2

𝜏2
0

])
∝ exp

(
− 1

2𝜏2
1
(\ − `1)2

)

\ |y ∼ N(`1, 𝜏
2
1 ), where `1 =

1
𝜏2

0
`0 + 1

𝜎2 y
1
𝜏2

0
+ 1

𝜎2

and
1
𝜏2

1
=

1
𝜏2

0
+ 1
𝜎2

• 1/variance = precision
• Posterior precision = prior precision + data precision
• Posterior mean is precision weighted mean
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Normal distribution - example
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Normal distribution - conjugate prior for \

• Several observations – use chain rule



Normal distribution - conjugate prior for \

• Several observations y = (y1, . . . , yn)

p(\ |y) = N(\ |`n, 𝜏
2
n )

where `n =

1
𝜏2

0
`0 + n

𝜎2 ȳ
1
𝜏2

0
+ n

𝜎2

ja
1
𝜏2

n
=

1
𝜏2

0
+ n
𝜎2

• If 𝜏2
0 = 𝜎2, prior corresponds to one virtual observation with

value `0

• If 𝜏0 → ∞ when n fixed
or if n → ∞ when 𝜏0 fixed

p(\ |y) ≈ N(\ |ȳ, 𝜎2/n)
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Normal distribution - conjugate prior for \

• Posterior predictive distribution

p(ỹ|y) =
∫

p(ỹ|\)p(\ |y)d\

p(ỹ|y) ∝
∫

exp
(
− 1

2𝜎2 (ỹ − \)2
)

exp

(
− 1

2𝜏2
1
(\ − `1)2

)
d\

ỹ|y ∼ N(`1, 𝜎
2 + 𝜏2

1 )

• Predictive variance = observation model variance 𝜎2 +
posterior variance 𝜏2

1



Normal model

• Gets more interesting when both mean and variance are
unknown

• next week

• The mean can be also a function of covariates
• e.g. normal linear regression y ∼ N(𝛼 + 𝛽x, 𝜎2)

• Gaussian processes, Kalman filters, variational inference,
Laplace approximaion, etc.
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Some other one parameter models

• Poisson, useful for count data (e.g. in epidemiology)
• Exponential, useful for time to an event (e.g. particle decay)



Poisson model for count data

• Number of traffic deaths per year (by Liikenneturva)
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Poisson model for count data

• Number of traffic deaths per year (by Liikenneturva)
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Thinking priors

• Make a guess of some quantities and then find out useful prior
information for that. E.g.

• proportion of students using MS Windows vs. Apple macOS vs.
Linux

• proportion of students who are longer than 1.9m
• proportion of students, who submitted the first assignment,

attending the next lecture
• proportion of students, who submitted the first assignment,

submitting the last assignment


