Bayesian data analysis (Aalto fall 2024)

e Book: Gelman, Carlin, Stern, Dunson, Vehtari & Rubin:
Bayesian Data Analysis, Third Edition. (online pdf available)

® The course website has more detailed information
https://avehtari.github.io/BDA_course_Aalto/Aalto2024.html

® Timetable: see the course website

e TAs: David Kohns, Mélanie Guhl, Noa Kallioinen, Anna Riha,
Varun Shanmugam, Maksim Sinelnikov, Teemu Sailynoja

Tents in Statistical Seience

Bayesian Data Analysis
Third Edition



https://avehtari.github.io/BDA_course_Aalto/Aalto2024.html
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® Model fitted with 500 adults, extrapolation to children?
® Maturation effect, 17 observations from children

lwith E. Siivola, Aalto and S. Weber, Novartis Pharma
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Uncertainty in modeling

Posterior draws and predictive distribution
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Bayesian probability theory

expert information data
N /
mathematical model Bayesian probability theory
+ + , p(y10)p(6)
. . . p(0ly) = —F——
uncertainty with probabilities p(y)
ply) = //)(ﬂH)p(H\V\‘)dH
l v
updated uncertainty
+

understandable trusted models



Bayesian inference with computers

mathematical model to computer
probabilistic programming
computation, automatic inference algorithms

limitations of computers



Yes, but did it work?

computation + inference diagnostics
model diagnostics
limitations of mathematical models

improve and iterate



Bayesian Workflow

All the pieces put together



Probabilistic programming and Stan

Stan is a probabilistic programming framework and ecosystem
40+ developers, 100+ contributors, 200K+ users

mc-stan.org
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Bayesian Data Analysis course

¢ Probability distributions as model building blocks
® need to understand the math part (prereq.)
® continuous vs discrete (prereq.)
® observation model, likelihood, prior
® constructing bigger models
e Computation

® We need to be able to compute expectations

Eop, [5(6)] = / p(61y)g(6)d8

® when analytic solutions are not available, computational
approximations with finite number of function evaluations
® grid, importance sampling, Monte Carlo, Markov chain Monte
Carlo
* Workflow

® steps of model building, inference, and diagnostics



Impact on society

Better modelling and quantification of uncertainty

— better science

— better informed decision making
in companies, government, and NGOs
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® Based on Bayesian probability theory

® uncertainty is presented with probabilities

® probabilities are updated based on new information
Thomas Bayes (1707-1761)

® English nonconformist, Presbyterian minister, mathematician
® considered the problem of inverse probability

® significant part of the Bayesian theory

Bayes did not invent all, but was first to solve problem of inverse
probability in special case

Modern Bayesian theory with rigorous proofs developed in 20th
century

A nice book about history: Sharon Bertsch McGrayne,
The Theory That Would Not Die, 2012.
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Term Bayesian used first time in mid 20th century

e Earlier there was just "probability theory"

® concept of the probability was not strictly defined, although it was
close to modern Bayesian interpretation
¢ in the end of 19th century there were increasing demand for
more strict definition of probability (mathematical and
philosophical problem)
¢ |n the beginning of 20th century frequentist view gained
popularity
® accepts definition of probabilities only through frequencies
® does not accept inverse probability or use of prior
® gained popularity due to apparent objectivity and "cook book"
like reference books
® R. A. Fisher used in 1950 first time term "Bayesian" to
emphasize the difference to general term "probability theory"

® term became quickly popular, because alternative descriptions
were longer

® The probabilistic programming revolution started in early 1990’s
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Two types of uncertainty

¢ Aleatoric uncertainty due to randomness

® we are not able to obtain observations which could reduce this
uncertainty

¢ Epistemic uncertainty due to lack of knowledge
® we are able to obtain observations which can reduce this
uncertainty
® two observers may have different epistemic uncertainty
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Updating uncertainty

® Probability of red ﬁ —9

p(y =#red|@) =6 aleatoric uncertainty

p(0) epistemic uncertainty

® Picking many chips updates our uncertainty about the
proportion

p(Oy = #red, ,#red, #red, .. .) =2

r(8)p(6)
[pG10)p(8)do

Bayes rule p(8|y) =



Model vs. likelihood

* Bayes rule p(6|y) o« p(y|0)p(0)
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¢ Likelihood: p(y|@) as a function of 8 given fixed y provides
information about epistemic uncertainty, but is not a probability
distribution



Model vs. likelihood

* Bayes rule p(6|y) o« p(y|0)p(0)

® Model: p(y|0) as a function of y given fixed 6 describes the
aleatoric uncertainty

¢ Likelihood: p(y|@) as a function of 8 given fixed y provides
information about epistemic uncertainty, but is not a probability
distribution

® Bayes rule combines the likelihood with prior uncertainty p(8)
and transforms them to updated posterior uncertainty
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The art of probabilistic modeling

® The art of probabilistic modeling is to describe in a
mathematical form (model and prior distributions) what we
already know and what we don’t know

e “Easy” part is to use Bayes rule to update the uncertainties
® computational challenges

e Other parts of the art of probabilistic modeling are, for example,

® model checking: is data in conflict with our prior knowledge?
® presentation: presenting the model and the results to the
application experts



Modeling nature

® Drop a ball from different heights and measure time



Modeling nature

® Drop a ball from different heights and measure time
® Newton
® air resistance, air pressure, shape and surface structure of the
ball
® relativity



Modeling nature

® Drop a ball from different heights and measure time
® Newton
® air resistance, air pressure, shape and surface structure of the
ball
® relativity
¢ Taking into account the accuracy of the measurements, how
accurate model is needed?



Modeling nature

® Drop a ball from different heights and measure time

® Newton

® air resistance, air pressure, shape and surface structure of the
ball

® relativity

¢ Taking into account the accuracy of the measurements, how
accurate model is needed?

® often simple models are adequate and useful

® All models are wrong, but some of them are useful, George P.
Box



Reminder: Uncertainty and probabilistic modeling
® Two types of uncertainty: aleatoric and epistemic
® Representing uncertainty with probabilities

¢ Updating uncertainty



Chapter 1

Reading instructions

1.1-1.3 important terms

1.4 a useful example

1.5 foundations

1.6 & 1.7 examples (can be skipped, but may be useful to read)

1.8 & 1.9 background material, good to read before doing the
exercises

1.10 a point of view for using Bayesian inference



Part of the assignment 1

Refresh your memory on these concepts!

probability

probability density

probability mass

probability density function (pdf)
probability mass function (pmf)
probability distribution

discrete probability distribution
continuous probability distribution
cumulative distribution function (cdf)
likelihood

Bayes rule



Ambiguous notation in statistics
Find this in the Chapter 1 reading instructions on the course web page!
Inp(y | 6)
- y can be variable or value
we could clarify by using p(Y | ) or p(y | 8)
- 6 can be variable or value
we could clarify by using p(y | ©®) or p(y | 6)
- p can be a discrete or continuous function of y or 6
we could clarify by using Py, Pg, py Of pe
- Py(Y | ® = 0) is a probability mass function, sampling
distribution, observation model
- P(Y =y | © = 0) is a probability
- Pe(Y =y | 0) is a likelihood function (can be discrete or
continuous)
- py(Y | © = 0) is a probability density function, sampling
distrbution, observation model
- p(Y =y | ©®=0)is adensity
- pe(Y =y | ©) is a likelihood function (can be discrete or
continuous)
- yand 6 can also be mix of continuous and discrete
- due to the sloppines sometimes likelihood is used to refer

Py o(Y | ©), py.o(Y | ©®)
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Questions

® Pick a number between 1-5

® raise as many fingers
® is the number of fingers raised random (by you or by others)?

* |f we build a robot with very fast vision which can observe the
rotating coin accurately, is the throw random for the robot?

® What is your own example with both aleatoric and epistemic
uncertainty?



