
Bayesian data analysis (Aalto fall 2024)

• Book: Gelman, Carlin, Stern, Dunson, Vehtari & Rubin:
Bayesian Data Analysis, Third Edition. (online pdf available)

• The course website has more detailed information
https://avehtari.github.io/BDA_course_Aalto/Aalto2024.html

• Timetable: see the course website
• TAs: David Kohns, Mélanie Guhl, Noa Kallioinen, Anna Riha,

Varun Shanmugam, Maksim Sinelnikov, Teemu Säilynoja

https://avehtari.github.io/BDA_course_Aalto/Aalto2024.html


Uncertainty and decision making

• Predicting concrete quality

→



Uncertainty and decision making1

• Everolimus is immunosuppressant to prevent rejection of organ
transplants

• Pharmacokinetic model of drug and body, optimal dosage
depends on weight
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Drug concentration as a function of time

• Model fitted with 500 adults, extrapolation to children?
• Maturation effect, 17 observations from children

1with E. Siivola, Aalto and S. Weber, Novartis Pharma
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Bayesian probability theory

expert information

data
↘ ↙
mathematical model

+
uncertainty with probabilities

+
Bayesian probability theory

p(𝜃 |y) = p(y|𝜃)p(𝜃)
p(y)

p(ỹ|y) =
∫

p(ỹ|𝜃)p(𝜃 |y)d𝜃
↓

updated uncertainty

+
understandable trusted models
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Bayesian inference with computers

mathematical model to computer

probabilistic programming

computation, automatic inference algorithms

limitations of computers



Yes, but did it work?

computation + inference diagnostics

model diagnostics

limitations of mathematical models

improve and iterate



Bayesian Workflow

All the pieces put together



Probabilistic programming and Stan

Stan is a probabilistic programming framework and ecosystem
40+ developers, 100+ contributors, 200K+ users

mc-stan.org



Bayesian Data Analysis course

• Probability distributions as model building blocks
• need to understand the math part (prereq.)
• continuous vs discrete (prereq.)
• observation model, likelihood, prior
• constructing bigger models

• Computation
• We need to be able to compute expectations

E𝜃 |y [g(𝜃)] =
∫

p(𝜃 |y)g(𝜃)d𝜃

• when analytic solutions are not available, computational
approximations with finite number of function evaluations

• grid, importance sampling, Monte Carlo, Markov chain Monte
Carlo

• Workflow
• steps of model building, inference, and diagnostics
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Impact on society

Better modelling and quantification of uncertainty

→ better science

→ better informed decision making
in companies, government, and NGOs



Bayesian probability theory

• Based on Bayesian probability theory
• uncertainty is presented with probabilities
• probabilities are updated based on new information

• Thomas Bayes (170?–1761)
• English nonconformist, Presbyterian minister, mathematician
• considered the problem of inverse probability

• significant part of the Bayesian theory

• Bayes did not invent all, but was first to solve problem of inverse
probability in special case

• Modern Bayesian theory with rigorous proofs developed in 20th
century

• A nice book about history: Sharon Bertsch McGrayne,
The Theory That Would Not Die, 2012.
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Term Bayesian used first time in mid 20th century

• Earlier there was just "probability theory"
• concept of the probability was not strictly defined, although it was

close to modern Bayesian interpretation
• in the end of 19th century there were increasing demand for

more strict definition of probability (mathematical and
philosophical problem)

• In the beginning of 20th century frequentist view gained
popularity

• accepts definition of probabilities only through frequencies
• does not accept inverse probability or use of prior
• gained popularity due to apparent objectivity and "cook book"

like reference books
• R. A. Fisher used in 1950 first time term "Bayesian" to

emphasize the difference to general term "probability theory"
• term became quickly popular, because alternative descriptions

were longer
• The probabilistic programming revolution started in early 1990’s
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Uncertainty and probabilistic modeling

• Two types of uncertainty: aleatoric and epistemic

• Representing uncertainty with probabilities

• Updating uncertainty
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• Aleatoric uncertainty due to randomness

• we are not able to obtain observations which could reduce this
uncertainty

• Epistemic uncertainty due to lack of knowledge

• we are able to obtain observations which can reduce this
uncertainty

• two observers may have different epistemic uncertainty
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Updating uncertainty

• Probability of red #red
#red+#yellow = 𝜃

• p(y = #red|𝜃) = 𝜃 aleatoric uncertainty

• p(𝜃) epistemic uncertainty

• Picking many chips updates our uncertainty about the
proportion

• p(𝜃 |y = #red, #yellow, #red, #red, . . .) =?

• Bayes rule p(𝜃 |y) = p(y | 𝜃 )p(𝜃 )∫
p(y | 𝜃 )p(𝜃 )d𝜃
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Model vs. likelihood

• Bayes rule p(𝜃 |y) ∝ p(y|𝜃)p(𝜃)

• Model: p(y|𝜃) as a function of y given fixed 𝜃 describes the
aleatoric uncertainty

• Likelihood: p(y|𝜽) as a function of 𝜽 given fixed y provides
information about epistemic uncertainty, but is not a probability
distribution

• Bayes rule combines the likelihood with prior uncertainty p(𝜃)
and transforms them to updated posterior uncertainty
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The art of probabilistic modeling

• The art of probabilistic modeling is to describe in a
mathematical form (model and prior distributions) what we
already know and what we don’t know

• “Easy” part is to use Bayes rule to update the uncertainties
• computational challenges

• Other parts of the art of probabilistic modeling are, for example,
• model checking: is data in conflict with our prior knowledge?
• presentation: presenting the model and the results to the

application experts
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Modeling nature

• Drop a ball from different heights and measure time

• Newton
• air resistance, air pressure, shape and surface structure of the

ball
• relativity

• Taking into account the accuracy of the measurements, how
accurate model is needed?

• often simple models are adequate and useful
• All models are wrong, but some of them are useful, George P.

Box
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Reminder: Uncertainty and probabilistic modeling

• Two types of uncertainty: aleatoric and epistemic

• Representing uncertainty with probabilities

• Updating uncertainty



Chapter 1
Reading instructions

• 1.1-1.3 important terms
• 1.4 a useful example
• 1.5 foundations
• 1.6 & 1.7 examples (can be skipped, but may be useful to read)
• 1.8 & 1.9 background material, good to read before doing the

exercises
• 1.10 a point of view for using Bayesian inference



Part of the assignment 1

Refresh your memory on these concepts!
- probability
- probability density
- probability mass
- probability density function (pdf)
- probability mass function (pmf)
- probability distribution
- discrete probability distribution
- continuous probability distribution
- cumulative distribution function (cdf)
- likelihood
- Bayes rule



Ambiguous notation in statistics
Find this in the Chapter 1 reading instructions on the course web page!

In p(y | 𝜃)
- y can be variable or value

we could clarify by using p(Y | 𝜃) or p(y | 𝜃)
- 𝜃 can be variable or value

we could clarify by using p(y | Θ) or p(y | 𝜃)
- p can be a discrete or continuous function of y or 𝜃

we could clarify by using PY , PΘ, pY or pΘ
- PY (Y | Θ = 𝜃) is a probability mass function, sampling

distribution, observation model
- P(Y = y | Θ = 𝜃) is a probability
- PΘ (Y = y | Θ) is a likelihood function (can be discrete or

continuous)
- pY (Y | Θ = 𝜃) is a probability density function, sampling

distrbution, observation model
- p(Y = y | Θ = 𝜃) is a density
- pΘ (Y = y | Θ) is a likelihood function (can be discrete or

continuous)
- y and 𝜃 can also be mix of continuous and discrete
- due to the sloppines sometimes likelihood is used to refer

PY , 𝜃 (Y | Θ), pY , 𝜃 (Y | Θ)



Questions

• Pick a number between 1–5

• raise as many fingers
• is the number of fingers raised random (by you or by others)?

• If we build a robot with very fast vision which can observe the
rotating coin accurately, is the throw random for the robot?

• What is your own example with both aleatoric and epistemic
uncertainty?
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