
Variable selection with projpred

• In your project it is sufficient to compare 2–3 models

• ...but if you are interested in variable selection, then the number
of potential models is 2p, where p is the number of variables

• ...in such case I recommended to use brms + projpred

• projpred avoids the overfit in model selection
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Use of reference models in model selection

• Background
• First example
• Bayesian and decision theoretical justification
• More examples
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Not a novel idea

• Lindley (1968): The choice of variables in multiple regression
• Bayesian and decision theoretical justification, but simplified

model and computation

• Goutis & Robert (1998): Model choice in generalised linear
models: a Bayesian approach via Kullback-Leibler projections

• one key part for practical computation
• Related approaches

• gold standard, preconditioning, teacher and student, distilling, . . .
• Motivation in these

• measurement cost in covariates
• running cost of predictive model
• easier explanation / learn from the model
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Example: Simulated regression

f ∼ N(0, 1),
y | f ∼ N(f , 1)

xj | f ∼ N(√𝜌f , 1 − 𝜌), j = 1, . . . , 150 ,
xj | f ∼ N(0, 1), j = 151, . . . , 500 .
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Example: Individual correlations

f ∼ N(0, 1),
y | f ∼ N(f , 1)

xj | f ∼ N(√𝜌f , 1 − 𝜌), j = 1, . . . , 150 ,
xj | f ∼ N(0, 1), j = 151, . . . , 500 .

Correlation for xj, y
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Example: Individual correlations

f ∼ N(0, 1),
y | f ∼ N(f , 1)

xj | f ∼ N(√𝜌f , 1 − 𝜌), j = 1, . . . , 150 ,
xj | f ∼ N(0, 1), j = 151, . . . , 500 .

Correlation for xj, y

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
● ● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
● ●

●

● ●
● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
● ● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
● ●

●

● ●
● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
randomized variable index

|R
(x

j, 
y)

|

5 / 22



Example: Individual correlations

f ∼ N(0, 1),
y | f ∼ N(f , 1)

xj | f ∼ N(√𝜌f , 1 − 𝜌), j = 1, . . . , 150 ,
xj | f ∼ N(0, 1), j = 151, . . . , 500 .

Correlation for xj, f
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Example: Individual correlations

f ∼ N(0, 1),
y | f ∼ N(f , 1)

xj | f ∼ N(√𝜌f , 1 − 𝜌), j = 1, . . . , 150 ,
xj | f ∼ N(0, 1), j = 151, . . . , 500 .

Correlation for xj, f∗ (f∗ = PCA + linear regression)
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Knowing the latent values would help

model helps
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Estimating the latent values with a reference model helps
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Bayesian justification

• Theory says to integrate over all the uncertainties
• build a rich model
• make model checking etc.
• this model can be the reference model

• Consider model selection as decision problem
• Replace full posterior p(𝜃 | D) with some constrained q(𝜃) so

that the predictive distribution changes as little as possible
• Example constraints

• q(𝜃) can have only point mass at some 𝜃0
⇒ “Optimal point estimates”

• Some covariates must have exactly zero regression coefficient
⇒ “Which covariates can be discarded”

• Much simpler model
⇒ “Easier explanation”
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Logistic regression with two covariates

Posterior Predictions
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Predictive projection

• Replace full posterior p(𝜃 | D) with some constrained q(𝜃) so
that the predictive distribution changes as little as possible

• As the full posterior p(𝜃 | D) is projected to q(𝜃)
• the prior is also projected and there is no need to define priors

for submodels separately

• even if we constrain some coefficients to be 0, the predictive
inference is conditoned on the information related features
contributed to the reference model

• solves the problem of how to do the inference after the model
selection
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Projective selection
• How to select a feature combination?

• For a given model size, choose feature combination with
minimal projective loss

• Search heuristics, e.g.
• Monte Carlo search
• Forward search
• L1-penalization (as in Lasso)

• Use cross-validation to select the appropriate model size
• need to cross-validate over the search paths
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Projective selection vs. Lasso
Same simulated regression data as before,
n = 50, p = 500, prel = 150, 𝜌 = 0.5
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Bodyfat: small p example of projection predictive

Predict bodyfat percentage. The reference value is obtained by
immersing person in water. n = 251.
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Bodyfat: small p example of projection predictive

Predict bodyfat percentage. The reference value is obtained by
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Bodyfat

Marginal posteriors of coefficients
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Bodyfat

Bivariate marginal of weight and height
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Bodyfat

The predictive performance of the full and submodels
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Bodyfat

Marginals of the reference and projected posterior
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Predictive performance vs. selected variables

• The initial aim: find the minimal set of variables providing similar
predictive performance as the reference model

• Some keep asking can it find the true variables

• What do you mean by true variables?
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Variability under data perturbation

Comparing projection predictive variable selection (projpred) and
stepwise maximum likelihood over bootstrapped datasets
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• Reduced variability, but in case of noisy finite data, there will be
some variability under data perturbation

• projpred uses
• Bayesian inference for the reference
•
• Projection for submodel inference
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Multilevel regerssion and GAMMs

• projpred supports also hierarchical models in brms
Catalina, Bürkner, and Vehtari (2022). Projection predictive inference
for generalized linear and additive multilevel models. Proceedings of
the 24th International Conference on Artificial Intelligence and
Statistics (AISTATS), PMLR 151:4446–4461.
https://proceedings.mlr.press/v151/catalina22a.html
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Scaling

• So far the biggest number of variables we’ve tested is 22K
• 96s for creating a reference model
• 14s for projection predictive variable selection
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Intro paper and brms and rstanarm + projpred examples

• McLatchie, Rögnvaldsson, Weber, and Aki Vehtari (2024). Advances
in projection predictive inference. Statistical Science.
https://arxiv.org/abs/2306.15581

• https://mc-stan.org/projpred/articles/projpred.html
• https://users.aalto.fi/~ave/casestudies.html
• Fast and often sufficient if n ≫ p

varsel <- cv_varsel(fit, method='forward', cv_method='loo',
validate_search=FALSE)

• Slower but needed if not n ≫ p
varsel <- cv_varsel(fit, method='forward', cv_method='kfold', K=10,

validate_search=TRUE)

• If p is very big
varsel <- cv_varsel(fit, method='L1', cv_method='kfold', K=5,

validate_search=TRUE)
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