Variable selection with projpred

- In your project it is sufficient to compare 2-3 models

Variable selection with projpred

- In your project it is sufficient to compare 2-3 models
- ...but if you are interested in variable selection, then the number of potential models is 2^{p}, where p is the number of variables

Variable selection with projpred

- In your project it is sufficient to compare 2-3 models
- ...but if you are interested in variable selection, then the number of potential models is 2^{p}, where p is the number of variables
- ...in such case I recommended to use brms + projpred

Variable selection with projpred

- In your project it is sufficient to compare 2-3 models
- ...but if you are interested in variable selection, then the number of potential models is 2^{p}, where p is the number of variables
- ...in such case I recommended to use brms + projpred
- projpred avoids the overfit in model selection

Use of reference models in model selection

- Background
- First example
- Bayesian and decision theoretical justification
- More examples

Not a novel idea

- Lindley (1968): The choice of variables in multiple regression
- Bayesian and decision theoretical justification, but simplified model and computation

Not a novel idea

- Lindley (1968): The choice of variables in multiple regression
- Bayesian and decision theoretical justification, but simplified model and computation
- Goutis \& Robert (1998): Model choice in generalised linear models: a Bayesian approach via Kullback-Leibler projections
- one key part for practical computation

Not a novel idea

- Lindley (1968): The choice of variables in multiple regression
- Bayesian and decision theoretical justification, but simplified model and computation
- Goutis \& Robert (1998): Model choice in generalised linear models: a Bayesian approach via Kullback-Leibler projections
- one key part for practical computation
- Related approaches
- gold standard, preconditioning, teacher and student, distilling, ...

Not a novel idea

- Lindley (1968): The choice of variables in multiple regression
- Bayesian and decision theoretical justification, but simplified model and computation
- Goutis \& Robert (1998): Model choice in generalised linear models: a Bayesian approach via Kullback-Leibler projections
- one key part for practical computation
- Related approaches
- gold standard, preconditioning, teacher and student, distilling, ...
- Motivation in these
- measurement cost in covariates
- running cost of predictive model
- easier explanation / learn from the model

Example: Simulated regression

Example: Simulated regression

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), \\
y \mid f & j=1, \ldots, 150, \\
\mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rlrl}
f & \sim \mathrm{~N}(0,1), & & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), \\
y \mid f & j=1, \ldots, 150, \\
\mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rlrl}
f & \sim \mathrm{~N}(0,1), & & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), \\
y \mid f & j=1, \ldots, 150, \\
\mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rlrl}
f & \sim \mathrm{~N}(0,1), & & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), \\
y \mid f & j=1, \ldots, 150, \\
\mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Simulated regression

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Example: Individual correlations

$$
\begin{array}{rlrl}
f \sim \mathrm{~N}(0,1), & & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & \\
y \mid f & j, \ldots, 150, \\
\mathrm{~N}(f, 1) & & x_{j} \mid f \sim \mathrm{~N}(0,1), & \\
y=151, \ldots, 500 .
\end{array}
$$

Correlation for x_{j}, y

Example: Individual correlations

$$
\begin{aligned}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & & j=151, \ldots, 500 .
\end{aligned}
$$

Correlation for x_{j}, y

Example: Individual correlations

$$
\begin{aligned}
& f \sim \mathrm{~N}(0,1), \quad x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), \quad j=1, \ldots, 150, \\
& y\left|f \sim \mathrm{~N}(f, 1) \quad x_{j}\right| f \sim \mathrm{~N}(0,1), \quad j=151, \ldots, 500 .
\end{aligned}
$$

Correlation for x_{j}, f

Example: Individual correlations

$$
\begin{array}{rll}
f \sim \mathrm{~N}(0,1), & x_{j} \mid f \sim \mathrm{~N}(\sqrt{\rho} f, 1-\rho), & j=1, \ldots, 150, \\
y \mid f \sim \mathrm{~N}(f, 1) & x_{j} \mid f \sim \mathrm{~N}(0,1), & j=151, \ldots, 500 .
\end{array}
$$

Correlation for $x_{j}, f_{*}\left(f_{*}=\mathrm{PCA}+\right.$ linear regression $)$

Knowing the latent values would help

A) Sample correlation with y vs. sample correlation with f

Estimating the latent values with a reference model helps

irrelevant x_{j}, relevant x_{j}
A) Sample correlation with y vs. sample correlation with f
B) Sample correlation with y vs. sample correlation with f_{*}
$f_{*}=$ linear regression fit with 3 principal components

Bayesian justification

- Theory says to integrate over all the uncertainties
- build a rich model
- make model checking etc.
- this model can be the reference model

Bayesian justification

- Theory says to integrate over all the uncertainties
- build a rich model
- make model checking etc.
- this model can be the reference model
- Consider model selection as decision problem

Bayesian justification

- Theory says to integrate over all the uncertainties
- build a rich model
- make model checking etc.
- this model can be the reference model
- Consider model selection as decision problem
- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible

Bayesian justification

- Theory says to integrate over all the uncertainties
- build a rich model
- make model checking etc.
- this model can be the reference model
- Consider model selection as decision problem
- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible
- Example constraints
- $q(\theta)$ can have only point mass at some θ_{0}
\Rightarrow "Optimal point estimates"

Bayesian justification

- Theory says to integrate over all the uncertainties
- build a rich model
- make model checking etc.
- this model can be the reference model
- Consider model selection as decision problem
- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible
- Example constraints
- $q(\theta)$ can have only point mass at some θ_{0} \Rightarrow "Optimal point estimates"
- Some covariates must have exactly zero regression coefficient \Rightarrow "Which covariates can be discarded"

Bayesian justification

- Theory says to integrate over all the uncertainties
- build a rich model
- make model checking etc.
- this model can be the reference model
- Consider model selection as decision problem
- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible
- Example constraints
- $q(\theta)$ can have only point mass at some θ_{0} \Rightarrow "Optimal point estimates"
- Some covariates must have exactly zero regression coefficient \Rightarrow "Which covariates can be discarded"
- Much simpler model \Rightarrow "Easier explanation"

Logistic regression with two covariates

Full posterior for β_{1} and β_{2} and contours of predicted class probability

Logistic regression with two covariates

Predictions

Projected point estimates for β_{1} and β_{2}

Logistic regression with two covariates

Posterior

Predictions

Projected point estimates, constraint $\beta_{1}=0$

Logistic regression with two covariates

Posterior

Predictions

Projected point estimates, constraint $\beta_{2}=0$

Logistic regression with two covariates

Posterior

Predictions

Draw-by-draw projection, constraint $\beta_{1}=0$

Logistic regression with two covariates

Posterior

Predictions

Draw-by-draw projection, constraint $\beta_{2}=0$

Predictive projection

- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible

Predictive projection

- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible
- As the full posterior $p(\theta \mid D)$ is projected to $q(\theta)$
- the prior is also projected and there is no need to define priors for submodels separately

Predictive projection

- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible
- As the full posterior $p(\theta \mid D)$ is projected to $q(\theta)$
- the prior is also projected and there is no need to define priors for submodels separately
- even if we constrain some coefficients to be 0 , the predictive inference is conditoned on the information related features contributed to the reference model

Predictive projection

- Replace full posterior $p(\theta \mid D)$ with some constrained $q(\theta)$ so that the predictive distribution changes as little as possible
- As the full posterior $p(\theta \mid D)$ is projected to $q(\theta)$
- the prior is also projected and there is no need to define priors for submodels separately
- even if we constrain some coefficients to be 0 , the predictive inference is conditoned on the information related features contributed to the reference model
- solves the problem of how to do the inference after the model selection

Projective selection

- How to select a feature combination?

Projective selection

- How to select a feature combination?
- For a given model size, choose feature combination with minimal projective loss

Projective selection

- How to select a feature combination?
- For a given model size, choose feature combination with minimal projective loss
- Search heuristics, e.g.
- Monte Carlo search
- Forward search
- L_{1}-penalization (as in Lasso)

Projective selection

- How to select a feature combination?
- For a given model size, choose feature combination with minimal projective loss
- Search heuristics, e.g.
- Monte Carlo search
- Forward search
- L_{1}-penalization (as in Lasso)
- Use cross-validation to select the appropriate model size
- need to cross-validate over the search paths

Projective selection vs. Lasso

Same simulated regression data as before, $n=50, p=500, p_{\text {rel }}=150, \rho=0.5$

Projective selection vs. Lasso

Same simulated regression data as before, $n=50, p=500, p_{\text {rel }}=150, \rho=0.5$

Projective selection vs. Lasso

Same simulated regression data as before, $n=50, p=500, p_{\text {rel }}=150, \rho=0.5$

Projective selection vs. Lasso

Same simulated regression data as before, $n=50, p=500, p_{\text {rel }}=150, \rho=0.5$

Bodyfat: small p example of projection predictive

Predict bodyfat percentage. The reference value is obtained by immersing person in water. $n=251$.

Bodyfat: small p example of projection predictive

Predict bodyfat percentage. The reference value is obtained by immersing person in water. $n=251$.

Bodyfat

Marginal posteriors of coefficients

Bodyfat

Bivariate marginal of weight and height

Bodyfat

The predictive performance of the full and submodels

Bodyfat

Marginals of the reference and projected posterior

Predictive performance vs. selected variables

- The initial aim: find the minimal set of variables providing similar predictive performance as the reference model

Predictive performance vs. selected variables

- The initial aim: find the minimal set of variables providing similar predictive performance as the reference model
- Some keep asking can it find the true variables

Predictive performance vs. selected variables

- The initial aim: find the minimal set of variables providing similar predictive performance as the reference model
- Some keep asking can it find the true variables
- What do you mean by true variables?

Variability under data perturbation

Comparing projection predictive variable selection (projpred) and stepwise maximum likelihood over bootstrapped datasets

Variability under data perturbation

Comparing projection predictive variable selection (projpred) and stepwise maximum likelihood over bootstrapped datasets

M	projpred	Freq \%	steplm
1	abdom., weight	39	abdom., age, forearm, height, hip, neck, thigh, wrist
2	abdom., wrist	10	abdom., age, chest, forearm, height, neck, thigh, wrist
3	abdom., height	10	abdom., forearm, height, neck, wrist
4	abdom., height, wrist	9	abdom., forearm, neck, weight, wrist
5	abdom., weight, wrist	8	abdom., age, height, hip, thigh, wrist
6	abdom., chest, height, wrist	2	abdom., age, height, hip, neck, thigh, wrist
7	abdom., biceps, weight, wrist	2	abdom., age, ankle, forearm, height, hip, neck, thigh, wrist
8	abdom., height, weight, wrist	2	abdom., age, biceps, chest, height, neck, wrist
9	abdom., age, wrist	2	abdom., age, biceps, chest, forearm, height, neck, thigh, wrist
10	abdom., age, height, neck, thigh, wrist	2	abdom., age, ankle, biceps, weight, wrist

Variability under data perturbation

Comparing projection predictive variable selection (projpred) and stepwise maximum likelihood over bootstrapped datasets

- Reduced variability, but in case of noisy finite data, there will be some variability under data perturbation

Variability under data perturbation

Comparing projection predictive variable selection (projpred) and stepwise maximum likelihood over bootstrapped datasets

- Reduced variability, but in case of noisy finite data, there will be some variability under data perturbation
- projpred uses
- Bayesian inference for the reference
- The reference model
- Projection for submodel inference

Variability under data perturbation

Comparing projection predictive variable selection (projpred) and stepwise maximum likelihood over bootstrapped datasets

- Reduced variability, but in case of noisy finite data, there will be some variability under data perturbation
- projpred uses
- Bayesian inference for the reference
- The reference model
- Projection for submodel inference

Multilevel regerssion and GAMMs

- projpred supports also hierarchical models in brms

Catalina, Bürkner, and Vehtari (2022). Projection predictive inference for generalized linear and additive multilevel models. Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 151:4446-4461. https://proceedings.mlr.press/v151/catalina22a.html

Scaling

- So far the biggest number of variables we've tested is 22 K
- 96s for creating a reference model
- 14 s for projection predictive variable selection

Intro paper and brms and rstanarm + projpred examples

- McLatchie, Rögnvaldsson, Weber, and Aki Vehtari (2023). Robust and efficient projection predictive inference. https://arxiv.org/abs/2306.15581
- https://mc-stan.org/projpred/articles/projpred.html
- https://users.aalto.fi/~ave/casestudies.html
- Fast and often sufficient if $n \gg p$
varsel <- cv_varsel(fit, method='forward', cv_method='loo', validate_search=FALSE)
- Slower but needed if not $n \gg p$ varsel <- cv_varsel(fit, method='forward', cv_method='kfold, K=10, validate_search=TRUE)
- If p is very big
varsel <- cv_varsel(fit, method='L1, cv_method='kfold, K=5, validate_search=TRUE)

