Chapter 4

- 4.1 Normal approximation (Laplace's method)
- 4.2 Large-sample theory
- 4.3 Counter examples
- includes examples of difficult posteriors for MCMC, too
- 4.4 Frequency evaluation*
- 4.5 Other statistical methods*

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \rightarrow \infty$
- bounded, non-singular, the number of parameters don't grow with n
- we can then approximate $p(\theta \mid y)$ with normal distribution

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \rightarrow \infty$
- bounded, non-singular, the number of parameters don't grow with n
- we can then approximate $p(\theta \mid y)$ with normal distribution
- Laplace used this (before Gauss) to approximate the posterior of binomial model to infer ratio of girls and boys born

Normal approximation (Laplace approximation)

- Often posterior converges to normal distribution when $n \rightarrow \infty$
- bounded, non-singular, the number of parameters don't grow with n
- we can then approximate $p(\theta \mid y)$ with normal distribution

Taylor series

- We can approximate $p(\theta \mid y)$ with normal distribution

$$
p(\theta \mid y) \approx \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \exp \left(-\frac{1}{2 \sigma_{\theta}^{2}}(\theta-\hat{\theta})^{2}\right)
$$

- i.e. \log posterior $\log p(\theta \mid y)$ can be approximated with a quadratic function

$$
\log p(\theta \mid y) \approx \alpha(\theta-\hat{\theta})^{2}+C
$$

Taylor series

- We can approximate $p(\theta \mid y)$ with normal distribution

$$
p(\theta \mid y) \approx \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \exp \left(-\frac{1}{2 \sigma_{\theta}^{2}}(\theta-\hat{\theta})^{2}\right)
$$

- i.e. \log posterior $\log p(\theta \mid y)$ can be approximated with a quadratic function

$$
\log p(\theta \mid y) \approx \alpha(\theta-\hat{\theta})^{2}+C
$$

- Corresponds to Taylor series expansion around $\theta=\hat{\theta}$

$$
f(\theta)=f(\hat{\theta})+f^{\prime}(\hat{\theta})(\theta-\hat{\theta})+\frac{f^{\prime \prime}(\hat{\theta})}{2!}(\theta-\hat{\theta})^{2}+\frac{f^{(3)}(\hat{\theta})}{3!}(\theta-\hat{\theta})^{3}+\ldots
$$

Taylor series

- We can approximate $p(\theta \mid y)$ with normal distribution

$$
p(\theta \mid y) \approx \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \exp \left(-\frac{1}{2 \sigma_{\theta}^{2}}(\theta-\hat{\theta})^{2}\right)
$$

- i.e. \log posterior $\log p(\theta \mid y)$ can be approximated with a quadratic function

$$
\log p(\theta \mid y) \approx \alpha(\theta-\hat{\theta})^{2}+C
$$

- Corresponds to Taylor series expansion around $\theta=\hat{\theta}$

$$
f(\theta)=f(\hat{\theta})+f^{\prime}(\hat{\theta})(\theta-\hat{\theta})+\frac{f^{\prime \prime}(\hat{\theta})}{2!}(\theta-\hat{\theta})^{2}+\frac{f^{(3)}(\hat{\theta})}{3!}(\theta-\hat{\theta})^{3}+\ldots
$$

- if $\hat{\theta}$ is at mode, then $f^{\prime}(\hat{\theta})=0$

Taylor series

- We can approximate $p(\theta \mid y)$ with normal distribution

$$
p(\theta \mid y) \approx \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \exp \left(-\frac{1}{2 \sigma_{\theta}^{2}}(\theta-\hat{\theta})^{2}\right)
$$

- i.e. \log posterior $\log p(\theta \mid y)$ can be approximated with a quadratic function

$$
\log p(\theta \mid y) \approx \alpha(\theta-\hat{\theta})^{2}+C
$$

- Corresponds to Taylor series expansion around $\theta=\hat{\theta}$

$$
f(\theta)=f(\hat{\theta})+f^{\prime}(\hat{\theta})(\theta-\hat{\theta})+\frac{f^{\prime \prime}(\hat{\theta})}{2!}(\theta-\hat{\theta})^{2}+\frac{f^{(3)}(\hat{\theta})}{3!}(\theta-\hat{\theta})^{3}+\ldots
$$

- if $\hat{\theta}$ is at mode, then $f^{\prime}(\hat{\theta})=0$
- often when $n \rightarrow \infty, \frac{f^{(3)}(\hat{\theta})}{3!}(\theta-\hat{\theta})^{3}+\ldots$ is small

Multivariate Taylor series

- Multivariate series expansion

$$
f(\theta)=f(\hat{\theta})+{\frac{d f\left(\theta^{\prime}\right)}{d \theta^{\prime}}}_{\theta^{\prime}=\hat{\theta}}(\theta-\hat{\theta})+\frac{1}{2!}(\theta-\hat{\theta})^{T}{\frac{d^{2} f\left(\theta^{\prime}\right)}{d \theta^{\prime 2}}}_{\theta^{\prime}=\hat{\theta}}(\theta-\hat{\theta})+\ldots
$$

Normal approximation

- Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$

$$
\log p(\theta \mid y)=\log p(\hat{\theta} \mid y)+\frac{1}{2}(\theta-\hat{\theta})^{T}\left[\frac{d^{2}}{d \theta^{2}} \log p\left(\theta^{\prime} \mid y\right)\right]_{\theta^{\prime}=\hat{\theta}}(\theta-\hat{\theta})+\ldots
$$

Normal approximation

- Taylor series expansion of the log posterior around the posterior mode $\hat{\theta}$
$\log p(\theta \mid y)=\log p(\hat{\theta} \mid y)+\frac{1}{2}(\theta-\hat{\theta})^{T}\left[\frac{d^{2}}{d \theta^{2}} \log p\left(\theta^{\prime} \mid y\right)\right]_{\theta^{\prime}=\hat{\theta}}(\theta-\hat{\theta})+\ldots$
- Multivariate normal $\propto|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}\left(\theta-\hat{\theta}^{T}\right) \Sigma^{-1}(\theta-\hat{\theta})\right)$

Normal approximation

- Multivariate normal $\propto|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}\left(\theta-\hat{\theta}^{T}\right) \Sigma^{-1}(\theta-\hat{\theta})\right)$

Normal approximation

- Multivariate normal $\propto|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}\left(\theta-\hat{\theta}^{T}\right) \Sigma^{-1}(\theta-\hat{\theta})\right)$

Normal approximation

- Normal approximation

$$
p(\theta \mid y) \approx \mathrm{N}\left(\hat{\theta},[I(\hat{\theta})]^{-1}\right)
$$

where $I(\theta)$ is called observed information

$$
I(\theta)=-\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid y)
$$

Normal approximation

- Normal approximation

$$
p(\theta \mid y) \approx \mathrm{N}\left(\hat{\theta},[I(\hat{\theta})]^{-1}\right)
$$

where $I(\theta)$ is called observed information

$$
I(\theta)=-\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid y)
$$

Hessian $H(\theta)=-I(\theta)$

Normal approximation

- $I(\theta)$ is called observed information

$$
I(\theta)=-\frac{d^{2}}{d \theta^{2}} \log p(\theta \mid y)
$$

- $I(\hat{\theta})$ is the second derivatives at the mode and thus describes the curvature at the mode
- if the mode is inside the parameter space, $I(\hat{\theta})$ is positive
- if θ is a vector, then $I(\theta)$ is a matrix

Normal approximation

- BDA3 Ch 4 has an example where it is easy to compute first and second derivatives and there is easy analytic solution to find where the first derivatives are zero

Normal approximation - numerically

- Normal approximation can be computed numerically
- iterative optimization to find a mode (may use gradients)
- autodiff or finite-difference for gradients and Hessian

Normal approximation - numerically

- Normal approximation can be computed numerically
- iterative optimization to find a mode (may use gradients)
- autodiff or finite-difference for gradients and Hessian
- e.g. in R, demo4_1.R:

```
bioassayfun <- function(w, df) {
    z <- w[1] + w[2]*df$x
    -sum(df$y*(z) - df$n*log1p(exp(z)))
}
theta0 <- c(0,0)
optimres <- optim(w0, bioassayfun, gr=NULL, df1, hessian=T)
thetahat <- optimres$par
Sigma <- solve(optimres$hessian)
```


Normal approximation - numerically

- Normal approximation can be computed numerically
- iterative optimization to find a mode (may use gradients)
- autodiff or finite-difference for gradients and Hessian
- CmdStan(R) has Laplace algorithm

Normal approximation - numerically

- Normal approximation can be computed numerically
- iterative optimization to find a mode (may use gradients)
- autodiff or finite-difference for gradients and Hessian
- CmdStan(R) has Laplace algorithm
- uses L-BFGS quasi-Newton optimization algorithm for finding the mode
- uses autodiff for gradients
- uses finite differences of gradients to compute Hessian

Normal approximation - numerically

- Normal approximation can be computed numerically
- iterative optimization to find a mode (may use gradients)
- autodiff or finite-difference for gradients and Hessian
- CmdStan(R) has Laplace algorithm
- uses L-BFGS quasi-Newton optimization algorithm for finding the mode
- uses autodiff for gradients
- uses finite differences of gradients to compute Hessian
- second order autodiff in progress

Normal approximation

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC

Normal approximation

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient

Normal approximation

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient
- In some cases accuracy for a conditional distribution is sufficient (Ch 13)
- e.g. Gaussian latent variable models, such as Gaussian processes (Ch 21) and Gaussian Markov random fields
- Rasmussen \& Williams: Gaussian Processes for Machine Learning
- CS-E4895-Gaussian Processes (in spring)

Normal approximation

- Optimization and computation of Hessian requires usually much less density evaluations than MCMC
- In some cases accuracy is sufficient
- In some cases accuracy for a conditional distribution is sufficient (Ch 13)
- e.g. Gaussian latent variable models, such as Gaussian processes (Ch 21) and Gaussian Markov random fields
- Rasmussen \& Williams: Gaussian Processes for Machine Learning
- CS-E4895-Gaussian Processes (in spring)
- Accuracy can be improved by importance sampling (Ch 10)

Example: Importance sampling in Bioassay

Example: Importance sampling in Bioassay

Example: Importance sampling in Bioassay

But the normal approximation is not that good here: Grid $\operatorname{sd}($ LD50 $) \approx 0.1$, Normal sd(LD50) $\approx .75$!

Example: Importance sampling in Bioassay

Example: Importance sampling in Bioassay

Grid $\mathrm{sd}(\mathrm{LD} 50) \approx 0.1, \mathrm{IS} \operatorname{sd}(\mathrm{LD} 50) \approx 0.1$

Normal approximation

- Accuracy can be improved by importance sampling
- Pareto-k diagnostic of importance sampling weights can be used for diagnostic
- in Bioassay example $k=0.57$, which is ok

Normal approximation

- Accuracy can be improved by importance sampling
- Pareto-k diagnostic of importance sampling weights can be used for diagnostic
- in Bioassay example $k=0.57$, which is ok
- CmdStan(R) has Laplace algorithm
- since version 2.33 (2023)
+ Pareto-k diagnostic via posterior package
+ importance resampling (IR) via posterior package

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
- e.g. $\theta \in[0,1]$ presenting probability

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
- e.g. $\theta \in[0,1]$ presenting probability
- Stan code can include constraints
real<lower=,upper=0> theta;

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
- e.g. $\theta \in[0,1]$ presenting probability
- Stan code can include constraints

```
real<lower=,upper=0> theta;
```

- for this, Stan does the inference in unconstrained space using logit transformation

Normal approximation and parameter transformations

- Normal approximation is not good for parameters with bounded or half-bounded support
- e.g. $\theta \in[0,1]$ presenting probability
- Stan code can include constraints

```
real<lower=,upper=0> theta;
```

- for this, Stan does the inference in unconstrained space using logit transformation
- density of the transformed parameter needs to include Jacobian of the transformation (BDA3 p. 21)

Normal approximation and parameter transformations

Binomial model $y \sim \operatorname{Bin}(\theta, N)$, with data $y=9, N=10$ With $\operatorname{Beta}(1,1)$ prior, the posterior is $\operatorname{Beta}(9+1,1+1)$

Normal approximation and parameter transformations

With $\operatorname{Beta}(1,1)$ prior, the posterior is $\operatorname{Beta}(9+1,1+1)$
Stan computes only the unnormalized posterior $q(\theta \mid y)$

Normal approximation and parameter transformations

With $\operatorname{Beta}(1,1)$ prior, the posterior is $\operatorname{Beta}(9+1,1+1)$
For illustration purposes we normalize Stan result $q(\theta \mid y)$

Normal approximation and parameter transformations

With $\operatorname{Beta}(1,1)$ prior, the posterior is $\operatorname{Beta}(9+1,1+1)$
$\operatorname{Beta}(9+1,1+1)$, but x-axis shows the unconstrained $\operatorname{logit}(\theta)$

Normal approximation and parameter transformations

...but we need to take into account the absolute value of the determinant of the Jacobian of the transformation $\theta(1-\theta)$

Normal approximation and parameter transformations

...but we need to take into account Jacobian $\theta(1-\theta)$
Let's compare a wrong normal approximation...

Normal approximation and parameter transformations

...but we need to take into account Jacobian $\theta(1-\theta)$
Let's compare a wrong normal approximation and correct one

Normal approximation and parameter transformations

Let's compare a wrong normal approximation and correct one
Sample from both approximations and show KDEs for draws

Normal approximation and parameter transformations

Let's compare a wrong normal approximation and correct one Inverse transform draws and show KDEs

Normal approximation and parameter transformations

Laplace approximation can be further improved with importance resampling

Other distributional approximations

- Higher order derivatives at the mode can be used

Other distributional approximations

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke (1989) use additional scaling along different principal axes

Other distributional approximations

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke (1989) use additional scaling along different principal axes
- Other distributions can be used (e.g. t-distribution)

Other distributional approximations

- Higher order derivatives at the mode can be used
- Split-normal and split-t by Geweke (1989) use additional scaling along different principal axes
- Other distributions can be used (e.g. t-distribution)
- Instead of mode and Hessian at mode, e.g.
- variational inference (Ch 13)
- CS-E4820 - Machine Learning: Advanced Probabilistic Methods
- CS-E4895-Gaussian Processes
- Stan has the ADVI algorithm (not very good implementation)
- Stan has Pathfinder algorithm (CmdStanR github version)
- instead of normal, methods with flexible flow transformations
- expectation propagation (Ch 13)
- speed of these is usually between optimization and MCMC
- stochastic variational inference can be even slower than MCMC

Pathfinder: Parallel quasi-Newton variational inference.

estimated ELBO: -340.5

estimated ELBO: -329.6

estimated ELBO: -332.2

estimated ELBO: -329.6

estimated ELBO: -329.7

Zhang, Carpenter, Gelman, and Vehtari (2022). Pathfinder: Parallel quasi-Newton variational inference. Journal of Machine Learning Research, 23(306):1-49.

Pathfinder: Parallel quasi-Newton variational inference.

estimated ELBO: -4.3

estimated ELBO: -579.9

estimated ELBO: -132.1

Zhang, Carpenter, Gelman, and Vehtari (2022). Pathfinder: Parallel quasi-Newton variational inference. Journal of Machine Learning Research, 23(306):1-49.

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Grid $\operatorname{sd}($ LD50 $) ~ \approx 0.090$,
Normal $\operatorname{sd}($ LD50 $) \approx .75$, Normal + IR sd(LD50) ≈ 0.096 (Pareto- $k=0.57$)

Distributional approximations

Exact, Normal at mode, Normal with variational inference

Grid sd(LD50) ≈ 0.090,
Normal sd(LD50) $\approx .75$, Normal + IR sd(LD50) ≈ 0.096 (Pareto- $k=0.57$)
$\mathrm{VI} \operatorname{sd}($ LD50 $) \approx 0.13, \mathrm{VI}+\mathrm{IR} \operatorname{sd}($ LD50 $) \approx 0.095($ Pareto $-k=0.17)$

Variational inference

- Variational inference includes a large number of methods

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
- possible to use use also mini-batching

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
- possible to use use also mini-batching
- can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
- possible to use use also mini-batching
- can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal
- in general, unlikely to achieve accuracy of HMC with the same computation cost

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
- possible to use use also mini-batching
- can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal
- in general, unlikely to achieve accuracy of HMC with the same computation cost
- with increasing number of posterior dimensions, the obtained approximation gets worse (Dhaka, Catalina, Andersen, Magnusson, Huggins, and Vehtari, 2020)

Variational inference

- Variational inference includes a large number of methods
- For a restricted set of models, possible to derive deterministic algorithms
- can be fast and can be relatively accurate
- Using stochastic (Monte Carlo) estimation of the divergence, possible to derive generic black box algorithms
- possible to use use also mini-batching
- can be fast and provide better predictive distribution than Laplace approximation if the posterior is far from normal
- in general, unlikely to achieve accuracy of HMC with the same computation cost
- with increasing number of posterior dimensions, the obtained approximation gets worse (Dhaka, Catalina, Andersen, Magnusson, Huggins, and Vehtari, 2020)
- with increasing number of posterior dimensions, the stochastic divergence estimate gets worse and flows have problems, too (Dhaka, Catalina, Andersen, Welandawe, Huggins, and Vehtari, 2021)

Large sample theory

- Asymptotic normality
- as n the number of observations y_{i} increases the posterior converges to normal distribution

Large sample theory

- Asymptotic normality
- as n the number of observations y_{i} increases the posterior converges to normal distribution
- can be shown by showing that
- eventually likelihood dominates the prior
- the higher order terms in Taylor series increase slower than the second order term

Large sample theory

- Asymptotic normality
- as n the number of observations y_{i} increases the posterior converges to normal distribution
- can be shown by showing that
- eventually likelihood dominates the prior
- the higher order terms in Taylor series increase slower than the second order term
- see counter examples

Large sample theory

- Assume "true" underlying data distribution $f(y)$
- observations y_{1}, \ldots, y_{n} are independent samples from the joint distribution $f(y)$
- "true" data distribution $f(y)$ is not always well defined
- in the following we proceed as if there were true underlying data distribution
- for the theory the exact form of $f(y)$ is not important as long at it has certain regularity conditions

Large sample theory

- Consistency
- if true distribution is included in the parametric family, so that $f(y)=p\left(y \mid \theta_{0}\right)$ for some θ_{0}, then posterior converges to a point θ_{0}, when $n \rightarrow \infty$

Large sample theory

- Consistency
- if true distribution is included in the parametric family, so that $f(y)=p\left(y \mid \theta_{0}\right)$ for some θ_{0}, then posterior converges to a point θ_{0}, when $n \rightarrow \infty$
- the same result as for maximum likelihood estimate

Large sample theory

- Consistency
- if true distribution is included in the parametric family, so that $f(y)=p\left(y \mid \theta_{0}\right)$ for some θ_{0}, then posterior converges to a point θ_{0}, when $n \rightarrow \infty$
- the same result as for maximum likelihood estimate
- If true distribution is not included in the parametric family, then there is no true θ_{0}
- true θ_{0} is replaced with θ_{0} which minimizes the Kullback-Leibler divergence from $f(y)$ to $p\left(y_{i} \mid \theta_{0}\right)$

Large sample theory

- Consistency
- if true distribution is included in the parametric family, so that $f(y)=p\left(y \mid \theta_{0}\right)$ for some θ_{0}, then posterior converges to a point θ_{0}, when $n \rightarrow \infty$
- the same result as for maximum likelihood estimate
- If true distribution is not included in the parametric family, then there is no true θ_{0}
- true θ_{0} is replaced with θ_{0} which minimizes the Kullback-Leibler divergence from $f(y)$ to $p\left(y_{i} \mid \theta_{0}\right)$
- the same result as for maximum likelihood estimate

Large sample theory - counter examples

- Under- and non-identifiability
- a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
- then there is no single point θ_{0} where posterior would converge

Large sample theory - counter examples

- Under- and non-identifiability
- a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
- then there is no single point θ_{0} where posterior would converge
- e.g. if the model is

$$
y \sim \mathrm{~N}(a+b+c x, \sigma)
$$

Large sample theory - counter examples

- Under- and non-identifiability
- a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
- then there is no single point θ_{0} where posterior would converge
- e.g. if the model is

$$
y \sim \mathrm{~N}(a+b+c x, \sigma)
$$

- posterior would converge to a line with prior determining the density along the line

Large sample theory - counter examples

- Under- and non-identifiability
- a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
- then there is no single point θ_{0} where posterior would converge
- e.g. if the model is

$$
y \sim \mathrm{~N}(a+b+c x, \sigma)
$$

- posterior would converge to a line with prior determining the density along the line
- e.g. if we never observe u and v at the same time and the model is

$$
\binom{u}{v} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right)
$$

then correlation ρ is non-identifiable

Large sample theory - counter examples

- Under- and non-identifiability
- a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
- then there is no single point θ_{0} where posterior would converge
- e.g. if the model is

$$
y \sim \mathrm{~N}(a+b+c x, \sigma)
$$

- posterior would converge to a line with prior determining the density along the line
- e.g. if we never observe u and v at the same time and the model is

$$
\binom{u}{v} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right)
$$

then correlation ρ is non-identifiable

- e.g. u and v could be length and weight of a student; if only one of them is measured for each student, then ρ is non-identifiable

Large sample theory - counter examples

- Under- and non-identifiability
- a model is under-identifiable, if the model has parameters or parameter combinations for which there is no information in the data
- then there is no single point θ_{0} where posterior would converge
- e.g. if the model is

$$
y \sim \mathrm{~N}(a+b+c x, \sigma)
$$

- posterior would converge to a line with prior determining the density along the line
- e.g. if we never observe u and v at the same time and the model is

$$
\binom{u}{v} \sim \mathrm{~N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right)
$$

then correlation ρ is non-identifiable

- e.g. u and v could be length and weight of a student; if only one of them is measured for each student, then ρ is non-identifiable
- Problem also for other inference methods like MCMC

Asymptotic identifiability vs finite data case

- If we randomly would measure both height and weight, asymptotically the correlation ρ would be identifiable

Asymptotic identifiability vs finite data case

- If we randomly would measure both height and weight, asymptotically the correlation ρ would be identifiable
- But a finite data from this data generating process may lack the joint height and weight observations, and thus the the finite data likelihood doesn't have information about ρ

Asymptotic identifiability vs finite data case

- If we randomly would measure both height and weight, asymptotically the correlation ρ would be identifiable
- But a finite data from this data generating process may lack the joint height and weight observations, and thus the the finite data likelihood doesn't have information about ρ
- If the likelihood is weakly informative for some parameters, priors and integration are more important

Large sample theory - counter examples

- If the number of parameter increases as the number of observation increases
- in some models number of parameters depends on the number of observations
- e.g. time series models $y_{t} \sim \mathrm{~N}\left(\theta_{t}, \sigma^{2}\right)$ and θ_{t} has prior in time
- posterior of θ_{t} does not converge to a point, if additional observations do not bring enough information

Large sample theory - counter examples

- Aliasing (valetoisto in Finnish)
- special case of under-identifiability where likelihood repeats in separate points
- e.g. mixture of normals

$$
p\left(y_{i} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \lambda\right)=\lambda \mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-\lambda) \mathrm{N}\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

Large sample theory - counter examples

- Aliasing (valetoisto in Finnish)
- special case of under-identifiability where likelihood repeats in separate points
- e.g. mixture of normals

$$
p\left(y_{i} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \lambda\right)=\lambda \mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-\lambda) \mathrm{N}\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

if $\left(\mu_{1}, \mu_{2}\right)$ are switched, $\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$ are switched and replace λ with ($1-\lambda$), model is equivalent; posterior would usually have two modes which are mirror images of each other and the posterior does not converge to a single point

Large sample theory - counter examples

- Aliasing (valetoisto in Finnish)
- special case of under-identifiability where likelihood repeats in separate points
- e.g. mixture of normals

$$
p\left(y_{i} \mid \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \lambda\right)=\lambda \mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+(1-\lambda) \mathrm{N}\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

if $\left(\mu_{1}, \mu_{2}\right)$ are switched, $\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$ are switched and replace λ with ($1-\lambda$), model is equivalent; posterior would usually have two modes which are mirror images of each other and the posterior does not converge to a single point

- For MCMC makes the convergence diagnostics more difficult, as it is difficult to identify aliasing from other multimodality

Large sample theory - counter examples

- Unbounded (rajoittamaton in Finnish) likelihood
- if likelihood is unbounded it is possible that there is no mode in the posterior

Large sample theory - counter examples

- Unbounded (rajoittamaton in Finnish) likelihood
- if likelihood is unbounded it is possible that there is no mode in the posterior
- e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_{1}=y_{i}$ for any i and $\sigma_{1}^{2} \rightarrow 0$, then likelihood $\rightarrow \infty$

Large sample theory - counter examples

- Unbounded (rajoittamaton in Finnish) likelihood
- if likelihood is unbounded it is possible that there is no mode in the posterior
- e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_{1}=y_{i}$ for any i and $\sigma_{1}^{2} \rightarrow 0$, then likelihood $\rightarrow \infty$
- if prior for σ_{1}^{2} does not go to zero when $\sigma_{1}^{2} \rightarrow 0$, then the posterior is unbounded

Large sample theory - counter examples

- Unbounded (rajoittamaton in Finnish) likelihood
- if likelihood is unbounded it is possible that there is no mode in the posterior
- e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_{1}=y_{i}$ for any i and $\sigma_{1}^{2} \rightarrow 0$, then likelihood $\rightarrow \infty$
- if prior for σ_{1}^{2} does not go to zero when $\sigma_{1}^{2} \rightarrow 0$, then the posterior is unbounded
- when $n \rightarrow \infty$ the number of likelihood modes increases

Large sample theory - counter examples

- Unbounded (rajoittamaton in Finnish) likelihood
- if likelihood is unbounded it is possible that there is no mode in the posterior
- e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_{1}=y_{i}$ for any i and $\sigma_{1}^{2} \rightarrow 0$, then likelihood $\rightarrow \infty$
- if prior for σ_{1}^{2} does not go to zero when $\sigma_{1}^{2} \rightarrow 0$, then the posterior is unbounded
- when $n \rightarrow \infty$ the number of likelihood modes increases
- Problem for any inference method including MCMC
- can be avoided with good priors

Large sample theory - counter examples

- Unbounded (rajoittamaton in Finnish) likelihood
- if likelihood is unbounded it is possible that there is no mode in the posterior
- e.g. previous normal mixture model; assume λ to be known (and not 0 or 1); if we set $\mu_{1}=y_{i}$ for any i and $\sigma_{1}^{2} \rightarrow 0$, then likelihood $\rightarrow \infty$
- if prior for σ_{1}^{2} does not go to zero when $\sigma_{1}^{2} \rightarrow 0$, then the posterior is unbounded
- when $n \rightarrow \infty$ the number of likelihood modes increases
- Problem for any inference method including MCMC
- can be avoided with good priors
- a prior close to a prior allowing unbounded posterior may produce almost unbounded posterior

Large sample theory - counter examples

- Improper posterior
- asymptotic results assume that probability sums to 1
- e.g. Binomial model, with Beta $(0,0)$ prior and observation $y=n$
- posterior $p(\theta \mid n, 0)=\theta^{n-1}(1-\theta)^{-1}$
- when $\theta \rightarrow 1$, then $p(\theta \mid n, 0) \rightarrow \infty$

Large sample theory - counter examples

- Improper posterior
- asymptotic results assume that probability sums to 1
- e.g. Binomial model, with Beta(0,0) prior and observation $y=n$
- posterior $p(\theta \mid n, 0)=\theta^{n-1}(1-\theta)^{-1}$
- when $\theta \rightarrow 1$, then $p(\theta \mid n, 0) \rightarrow \infty$
- Problem for any inference method including MCMC
- can be avoided with proper priors

Large sample theory - counter examples

- Improper posterior
- asymptotic results assume that probability sums to 1
- e.g. Binomial model, with $\operatorname{Beta}(0,0)$ prior and observation $y=n$
- posterior $p(\theta \mid n, 0)=\theta^{n-1}(1-\theta)^{-1}$
- when $\theta \rightarrow 1$, then $p(\theta \mid n, 0) \rightarrow \infty$
- Problem for any inference method including MCMC
- can be avoided with proper priors
- a prior close to a improper prior may produce almost improper posterior

Large sample theory - counter examples

- Prior distribution does not include the convergence point
- if in discrete case $p\left(\theta_{0}\right)=0$ or in continuous case $p(\theta)=0$ in the neighborhood of θ_{0}, then the convergence results based on the dominance of the likelihood do not hold

Large sample theory - counter examples

- Prior distribution does not include the convergence point
- if in discrete case $p\left(\theta_{0}\right)=0$ or in continuous case $p(\theta)=0$ in the neighborhood of θ_{0}, then the convergence results based on the dominance of the likelihood do not hold
- Should have a positive prior probability/density where needed

Large sample theory - counter examples

- Convergence point at the edge of the parameter space
- if θ_{0} is on the edge of the parameter space, Taylor series expansion has to be truncated, and normal approximation does not necessarily hold

Large sample theory - counter examples

- Convergence point at the edge of the parameter space
- if θ_{0} is on the edge of the parameter space, Taylor series expansion has to be truncated, and normal approximation does not necessarily hold
- e.g. $y_{i} \sim \mathrm{~N}(\theta, 1)$ with a restriction $\theta \geq 0$ and assume that $\theta_{0}=0$
- posterior of θ is left truncated normal distribution with $\mu=\bar{y}$
- in the limit $n \rightarrow \infty$ posterior is half normal distribution
- Can be easy or difficult for MCMC

Frequency evaluations

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
- It is useful to examine these for Bayesian inference, too

Frequency evaluations

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
- It is useful to examine these for Bayesian inference, too
- Asymptotic unbiasedness
- not that important in Bayesian inference, small and decreasing error more important

Frequency evaluations

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
- It is useful to examine these for Bayesian inference, too
- Asymptotic unbiasedness
- not that important in Bayesian inference, small and decreasing error more important
- Asymptotic efficiency
- no other point estimate with smaller squared error
- useful also in Bayesian inference, but should consider which utility/loss is important

Frequency evaluations

- Bayesian theory has epistemic and aleatory probabilities
- Frequency evaluations focus on frequency properties given aleatoric repetition of an observation and modeling
- It is useful to examine these for Bayesian inference, too
- Asymptotic unbiasedness
- not that important in Bayesian inference, small and decreasing error more important
- Asymptotic efficiency
- no other point estimate with smaller squared error
- useful also in Bayesian inference, but should consider which utility/loss is important
- Calibration
- $\alpha \%$-posterior interval has the true value in $\alpha \%$ cases
- $\alpha \%$-predictive interval has the true future values in $\alpha \%$ cases
- approximate calibration with shorter intervals for likely true values more important than exact calibration with very bad intervals for all possible values.

Frequentist statistics

- Frequentist statistics accepts only aleatory probabilities
- Estimates are based on data
- Uncertainty of estimates are based on all possible data sets which could have been generated by the data generating mechanism

Frequentist statistics

- Frequentist statistics accepts only aleatory probabilities
- Estimates are based on data
- Uncertainty of estimates are based on all possible data sets which could have been generated by the data generating mechanism
- inference is based also on data we did not observe

Frequentist statistics

- Frequentist statistics accepts only aleatory probabilities
- Estimates are based on data
- Uncertainty of estimates are based on all possible data sets which could have been generated by the data generating mechanism
- inference is based also on data we did not observe
- Estimates are derived to fulfill frequency properties
- Maximum likelihood (often) fulfills asymptotic frequency properties
- Common finite data desiderata are 1) unbiasedness, 2) minimum variance, 3) calibration of confidence interval

Frequentist statistics

- Estimates are derived to fulfill frequency properties
- Maximum likelihood fulfills just asymptotic frequency properties
- Common desiderata are 1) unbiasedness, 2) minimum variance, 3) calibration of confidence interval
- Requirement of unbiasedness may lead to higher variance or silly estimates
- unbiased estimate for strictly positive parameter can be negative

Frequentist statistics

- Estimates are derived to fulfill frequency properties
- Maximum likelihood fulfills just asymptotic frequency properties
- Common desiderata are 1) unbiasedness, 2) minimum variance, 3) calibration of confidence interval
- Requirement of unbiasedness may lead to higher variance or silly estimates
- unbiased estimate for strictly positive parameter can be negative
- Confidence interval is defined to have true value inside the interval in $\alpha \%$ cases of repeated data generation from the data generating mechanism
- doesn't need be useful to have perfect calibration

Frequentist vs Bayes vs others

- There is a great amount of very useful frequentist statistics
- also for simple models and lot's of data there is not much difference

Frequentist vs Bayes vs others

- There is a great amount of very useful frequentist statistics
- also for simple models and lot's of data there is not much difference
- Bayesian inference
- easier for complex, e.g. hierarchical, models
- easier when model changes
- a consistent way to add prior information

Frequentist vs Bayes vs others

- There is a great amount of very useful frequentist statistics
- also for simple models and lot's of data there is not much difference
- Bayesian inference
- easier for complex, e.g. hierarchical, models
- easier when model changes
- a consistent way to add prior information
- A lot of machine learning is not pure frequentist or Bayesian, but there is often a probabilistic flavor

