
Chapter 4

• 4.1 Normal approximation (Laplace’s method)
• 4.2 Large-sample theory
• 4.3 Counter examples

• includes examples of difficult posteriors for MCMC, too
• 4.4 Frequency evaluation*
• 4.5 Other statistical methods*

1 / 43



Normal approximation (Laplace approximation)

• Often posterior converges to normal distribution when
n → ∞

• bounded, non-singular, the number of parameters don’t grow
with n

• we can then approximate p(θ|y) with normal distribution

• Laplace used this (before Gauss) to approximate the
posterior of binomial model to infer ratio of girls and boys
born
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Normal approximation (Laplace approximation)

• Often posterior converges to normal distribution when
n → ∞

• bounded, non-singular, the number of parameters don’t grow
with n

• we can then approximate p(θ|y) with normal distribution
• Laplace used this (before Gauss) to approximate the

posterior of binomial model to infer ratio of girls and boys
born
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Normal approximation (Laplace approximation)

• Often posterior converges to normal distribution when
n → ∞

• bounded, non-singular, the number of parameters don’t grow
with n

• we can then approximate p(θ|y) with normal distribution

• Laplace used this (before Gauss) to approximate the
posterior of binomial model to infer ratio of girls and boys
born
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Taylor series

• We can approximate p(θ|y) with normal distribution

p(θ|y) ≈ 1√
2πσθ

exp

(
− 1

2σ2
θ

(θ − θ̂)2
)

• i.e. log posterior log p(θ|y) can be approximated with a
quadratic function

log p(θ|y) ≈ α(θ − θ̂)2 + C

• Corresponds to Taylor series expansion around θ = θ̂

f (θ) = f (θ̂)+f ′(θ̂)(θ − θ̂)+
f ′′(θ̂)

2!
(θ−θ̂)2+

f (3)(θ̂)
3!

(θ − θ̂)3 + . . .

• if θ̂ is at mode, then f ′(θ̂) = 0
• often when n → ∞, f (3)(θ̂)

3! (θ − θ̂)3 + . . . is small
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Multivariate Taylor series

• Multivariate series expansion

f (θ) = f (θ̂)+
df (θ′)
dθ′ θ′=θ̂

(θ − θ̂)+
1
2!
(θ−θ̂)T d2f (θ′)

dθ′2 θ′=θ̂
(θ−θ̂)+ . . .

4 / 43



Normal approximation

• Taylor series expansion of the log posterior around the
posterior mode θ̂

log p(θ|y) = log p(θ̂|y)+1
2
(θ−θ̂)T

[
d2

dθ2 log p(θ′|y)
]
θ′=θ̂

(θ−θ̂)+. . .

• Multivariate normal ∝ |Σ|−1/2 exp
(
−1

2(θ − θ̂T )Σ−1(θ − θ̂)
)
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Normal approximation

• Normal approximation

p(θ|y) ≈ N(θ̂, [I(θ̂)]−1)

where I(θ) is called observed information

I(θ) = − d2

dθ2 log p(θ|y)

Hessian H(θ) = −I(θ)
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Normal approximation

• I(θ) is called observed information

I(θ) = − d2

dθ2 log p(θ|y)

• I(θ̂) is the second derivatives at the mode and thus
describes the curvature at the mode

• if the mode is inside the parameter space, I(θ̂) is positive
• if θ is a vector, then I(θ) is a matrix
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Normal approximation

• BDA3 Ch 4 has an example where it is easy to compute first
and second derivatives and there is easy analytic solution to
find where the first derivatives are zero
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Normal approximation – numerically

• Normal approximation can be computed numerically
• iterative optimization to find a mode (may use gradients)
• autodiff or finite-difference for gradients and Hessian

• e.g. in R, demo4_1.R:

bioassayfun <− f u n c t i o n (w, d f ) {
z <− w[ 1 ] + w[ 2 ] * df$x
−sum( df$y * ( z ) − df$n * log1p ( exp ( z ) ) )

}

the ta0 <− c (0 ,0 )
opt imres <− optim (w0, bioassayfun , gr=NULL, df1 , hessian=T)
the taha t <− opt imres$par
Sigma <− solve ( opt imres$hessian )
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Normal approximation – numerically

• Normal approximation can be computed numerically
• iterative optimization to find a mode (may use gradients)
• autodiff or finite-difference for gradients and Hessian

• CmdStan(R) has Laplace algorithm

• uses L-BFGS quasi-Newton optimization algorithm for
finding the mode

• uses autodiff for gradients
• uses finite differences of gradients to compute Hessian

• second order autodiff in progress
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Normal approximation

• Optimization and computation of Hessian requires usually
much less density evaluations than MCMC

• In some cases accuracy is sufficient
• In some cases accuracy for a conditional distribution is

sufficient (Ch 13)
• e.g. Gaussian latent variable models, such as Gaussian

processes (Ch 21) and Gaussian Markov random fields
• Rasmussen & Williams: Gaussian Processes for Machine

Learning
• CS-E4895 - Gaussian Processes (in spring)

• Accuracy can be improved by importance sampling (Ch 10)
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Example: Importance sampling in Bioassay
G
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But the normal approximation is not that good here:
Grid sd(LD50) ≈ 0.1, Normal sd(LD50) ≈ .75!
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Grid sd(LD50) ≈ 0.1, IS sd(LD50) ≈ 0.1
12 / 43



Normal approximation

• Accuracy can be improved by importance sampling
• Pareto-k diagnostic of importance sampling weights can be

used for diagnostic
• in Bioassay example k = 0.57, which is ok

• CmdStan(R) has Laplace algorithm
• since version 2.33 (2023)

+ Pareto-k diagnostic via posterior package
+ importance resampling (IR) via posterior package
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Normal approximation and parameter transformations

• Normal approximation is not good for parameters with
bounded or half-bounded support

• e.g. θ ∈ [0,1] presenting probability

• Stan code can include constraints
real<lower=,upper=0> theta;

• for this, Stan does the inference in unconstrained space
using logit transformation

• density of the transformed parameter needs to include
Jacobian of the transformation (BDA3 p. 21)
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Normal approximation and parameter transformations
Binomial model y ∼ Bin(θ,N), with data y = 9,N = 10

With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)
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Normal approximation and parameter transformations
With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)

Stan computes only the unnormalized posterior q(θ|y)
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Normal approximation and parameter transformations
With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)

For illustration purposes we normalize Stan result q(θ|y)
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Normal approximation and parameter transformations
With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)

Beta(9 + 1,1 + 1), but x-axis shows the unconstrained logit(θ)
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Normal approximation and parameter transformations
...but we need to take into account the absolute value of the
determinant of the Jacobian of the transformation θ(1 − θ)
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Normal approximation and parameter transformations
...but we need to take into account Jacobian θ(1 − θ)

Let’s compare a wrong normal approximation...
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Normal approximation and parameter transformations
...but we need to take into account Jacobian θ(1 − θ)

Let’s compare a wrong normal approximation and correct one
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Normal approximation and parameter transformations
Let’s compare a wrong normal approximation and correct one

Sample from both approximations and show KDEs for draws
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Normal approximation and parameter transformations
Let’s compare a wrong normal approximation and correct one

Inverse transform draws and show KDEs
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Normal approximation and parameter transformations
Laplace approximation can be further improved with importance
resampling

24 / 43



Other distributional approximations

• Higher order derivatives at the mode can be used

• Split-normal and split-t by Geweke (1989) use additional
scaling along different principal axes

• Other distributions can be used (e.g. t-distribution)
• Instead of mode and Hessian at mode, e.g.

• variational inference (Ch 13)
• CS-E4820 - Machine Learning: Advanced Probabilistic

Methods
• CS-E4895 - Gaussian Processes
• Stan has the ADVI algorithm (not very good implementation)
• Stan has Pathfinder algorithm (CmdStanR github version)
• instead of normal, methods with flexible flow transformations

• expectation propagation (Ch 13)
• speed of these is usually between optimization and MCMC

• stochastic variational inference can be even slower than
MCMC
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Pathfinder: Parallel quasi-Newton variational inference.
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Zhang, Carpenter, Gelman, and Vehtari (2022). Pathfinder: Parallel
quasi-Newton variational inference. Journal of Machine Learning Research,
23(306):1–49. 26 / 43



Pathfinder: Parallel quasi-Newton variational inference.
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Distributional approximations
Exact, Normal at mode, Normal with variational inference
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Variational inference

• Variational inference includes a large number of methods

• For a restricted set of models, possible to derive
deterministic algorithms

• can be fast and can be relatively accurate
• Using stochastic (Monte Carlo) estimation of the divergence,

possible to derive generic black box algorithms

• possible to use use also mini-batching
• can be fast and provide better predictive distribution than

Laplace approximation if the posterior is far from normal
• in general, unlikely to achieve accuracy of HMC with the

same computation cost
• with increasing number of posterior dimensions, the obtained

approximation gets worse (Dhaka, Catalina, Andersen,
Magnusson, Huggins, and Vehtari, 2020)

• with increasing number of posterior dimensions, the
stochastic divergence estimate gets worse and flows have
problems, too (Dhaka, Catalina, Andersen, Welandawe,
Huggins, and Vehtari, 2021)
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Large sample theory

• Asymptotic normality
• as n the number of observations yi increases the posterior

converges to normal distribution

• can be shown by showing that
• eventually likelihood dominates the prior
• the higher order terms in Taylor series increase slower than

the second order term
• see counter examples
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Large sample theory

• Assume "true" underlying data distribution f (y)
• observations y1, . . . , yn are independent samples from the

joint distribution f (y)
• "true" data distribution f (y) is not always well defined
• in the following we proceed as if there were true underlying

data distribution
• for the theory the exact form of f (y) is not important as long

at it has certain regularity conditions
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Large sample theory

• Consistency
• if true distribution is included in the parametric family, so that

f (y) = p(y |θ0) for some θ0, then posterior converges to a
point θ0, when n → ∞

• the same result as for maximum likelihood estimate
• If true distribution is not included in the parametric family,

then there is no true θ0
• true θ0 is replaced with θ0 which minimizes the

Kullback-Leibler divergence from f (y) to p(yi |θ0)

• the same result as for maximum likelihood estimate
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Large sample theory – counter examples

• Under- and non-identifiability
• a model is under-identifiable, if the model has parameters or

parameter combinations for which there is no information in
the data

• then there is no single point θ0 where posterior would
converge

• e.g. if the model is

y ∼ N(a + b + cx , σ)

• posterior would converge to a line with prior determining the
density along the line

• e.g. if we never observe u and v at the same time and the
model is (

u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable

• Problem also for other inference methods like MCMC

32 / 43



Large sample theory – counter examples

• Under- and non-identifiability
• a model is under-identifiable, if the model has parameters or

parameter combinations for which there is no information in
the data

• then there is no single point θ0 where posterior would
converge

• e.g. if the model is

y ∼ N(a + b + cx , σ)

• posterior would converge to a line with prior determining the
density along the line

• e.g. if we never observe u and v at the same time and the
model is (

u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable

• Problem also for other inference methods like MCMC

32 / 43



Large sample theory – counter examples

• Under- and non-identifiability
• a model is under-identifiable, if the model has parameters or

parameter combinations for which there is no information in
the data

• then there is no single point θ0 where posterior would
converge

• e.g. if the model is

y ∼ N(a + b + cx , σ)
• posterior would converge to a line with prior determining the

density along the line

• e.g. if we never observe u and v at the same time and the
model is (

u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable

• Problem also for other inference methods like MCMC

32 / 43



Large sample theory – counter examples

• Under- and non-identifiability
• a model is under-identifiable, if the model has parameters or

parameter combinations for which there is no information in
the data

• then there is no single point θ0 where posterior would
converge

• e.g. if the model is

y ∼ N(a + b + cx , σ)
• posterior would converge to a line with prior determining the

density along the line
• e.g. if we never observe u and v at the same time and the

model is (
u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable

• Problem also for other inference methods like MCMC

32 / 43



Large sample theory – counter examples

• Under- and non-identifiability
• a model is under-identifiable, if the model has parameters or

parameter combinations for which there is no information in
the data

• then there is no single point θ0 where posterior would
converge

• e.g. if the model is

y ∼ N(a + b + cx , σ)
• posterior would converge to a line with prior determining the

density along the line
• e.g. if we never observe u and v at the same time and the

model is (
u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable

• Problem also for other inference methods like MCMC

32 / 43



Large sample theory – counter examples

• Under- and non-identifiability
• a model is under-identifiable, if the model has parameters or

parameter combinations for which there is no information in
the data

• then there is no single point θ0 where posterior would
converge

• e.g. if the model is

y ∼ N(a + b + cx , σ)
• posterior would converge to a line with prior determining the

density along the line
• e.g. if we never observe u and v at the same time and the

model is (
u
v

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
then correlation ρ is non-identifiable

• e.g. u and v could be length and weight of a student; if only
one of them is measured for each student, then ρ is
non-identifiable

• Problem also for other inference methods like MCMC 32 / 43



Asymptotic identifiability vs finite data case

• If we randomly would measure both height and weight,
asymptotically the correlation ρ would be identifiable

• But a finite data from this data generating process may lack
the joint height and weight observations, and thus the the
finite data likelihood doesn’t have information about ρ

• If the likelihood is weakly informative for some parameters,
priors and integration are more important
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Large sample theory – counter examples

• If the number of parameter increases as the number of
observation increases

• in some models number of parameters depends on the
number of observations

• e.g. time series models yt ∼ N(θt , σ
2) and θt has prior in time

• posterior of θt does not converge to a point, if additional
observations do not bring enough information
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Large sample theory – counter examples

• Aliasing (valetoisto in Finnish)
• special case of under-identifiability where likelihood repeats

in separate points
• e.g. mixture of normals

p(yi |µ1, µ2, σ
2
1 , σ

2
2 , λ) = λN(µ1, σ

2
1) + (1 − λ) N(µ2, σ

2
2)

if (µ1, µ2) are switched, (σ2
1 , σ

2
2) are switched and replace λ

with (1 − λ), model is equivalent; posterior would usually
have two modes which are mirror images of each other and
the posterior does not converge to a single point

• For MCMC makes the convergence diagnostics more
difficult, as it is difficult to identify aliasing from other
multimodality
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Large sample theory – counter examples

• Unbounded (rajoittamaton in Finnish) likelihood
• if likelihood is unbounded it is possible that there is no mode

in the posterior

• e.g. previous normal mixture model; assume λ to be known
(and not 0 or 1); if we set µ1 = yi for any i and σ2

1 → 0, then
likelihood → ∞

• if prior for σ2
1 does not go to zero when σ2

1 → 0, then the
posterior is unbounded

• when n → ∞ the number of likelihood modes increases
• Problem for any inference method including MCMC

• can be avoided with good priors

• a prior close to a prior allowing unbounded posterior may
produce almost unbounded posterior
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Large sample theory – counter examples

• Improper posterior
• asymptotic results assume that probability sums to 1
• e.g. Binomial model, with Beta(0,0) prior and observation

y = n
• posterior p(θ|n, 0) = θn−1(1 − θ)−1

• when θ → 1, then p(θ|n, 0) → ∞

• Problem for any inference method including MCMC
• can be avoided with proper priors

• a prior close to a improper prior may produce almost
improper posterior
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Large sample theory – counter examples

• Prior distribution does not include the convergence point
• if in discrete case p(θ0) = 0 or in continuous case p(θ) = 0

in the neighborhood of θ0, then the convergence results
based on the dominance of the likelihood do not hold

• Should have a positive prior probability/density where
needed
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Large sample theory – counter examples

• Convergence point at the edge of the parameter space
• if θ0 is on the edge of the parameter space, Taylor series

expansion has to be truncated, and normal approximation
does not necessarily hold

• e.g. yi ∼ N(θ,1) with a restriction θ ≥ 0 and assume that
θ0 = 0

• posterior of θ is left truncated normal distribution with µ = ȳ
• in the limit n → ∞ posterior is half normal distribution

• Can be easy or difficult for MCMC
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Frequency evaluations

• Bayesian theory has epistemic and aleatory probabilities
• Frequency evaluations focus on frequency properties given

aleatoric repetition of an observation and modeling
• It is useful to examine these for Bayesian inference, too

• Asymptotic unbiasedness
• not that important in Bayesian inference, small and

decreasing error more important
• Asymptotic efficiency

• no other point estimate with smaller squared error
• useful also in Bayesian inference, but should consider which

utility/loss is important
• Calibration

• α%-posterior interval has the true value in α% cases
• α%-predictive interval has the true future values in α% cases
• approximate calibration with shorter intervals for likely true

values more important than exact calibration with very bad
intervals for all possible values.
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Frequentist statistics
• Frequentist statistics accepts only aleatory probabilities

• Estimates are based on data
• Uncertainty of estimates are based on all possible data sets

which could have been generated by the data generating
mechanism

• inference is based also on data we did not observe
• Estimates are derived to fulfill frequency properties

• Maximum likelihood (often) fulfills asymptotic frequency
properties

• Common finite data desiderata are 1) unbiasedness, 2)
minimum variance, 3) calibration of confidence interval
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Frequentist statistics
• Estimates are derived to fulfill frequency properties

• Maximum likelihood fulfills just asymptotic frequency
properties

• Common desiderata are 1) unbiasedness, 2) minimum
variance, 3) calibration of confidence interval

• Requirement of unbiasedness may lead to higher variance
or silly estimates

• unbiased estimate for strictly positive parameter can be
negative

• Confidence interval is defined to have true value inside the
interval in α% cases of repeated data generation from the
data generating mechanism

• doesn’t need be useful to have perfect calibration
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Frequentist vs Bayes vs others
• There is a great amount of very useful frequentist statistics

• also for simple models and lot’s of data there is not much
difference

• Bayesian inference
• easier for complex, e.g. hierarchical, models
• easier when model changes
• a consistent way to add prior information

• A lot of machine learning is not pure frequentist or Bayesian,
but there is often a probabilistic flavor
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