Chapter 4

4.1 Normal approximation (Laplace’s method)

4.2 Large-sample theory
4.3 Counter examples

* includes examples of difficult posteriors for MCMC, too
4.4 Frequency evaluation®

4.5 Other statistical methods*
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Normal approximation (Laplace approximation)

e Often posterior converges to normal distribution when
n— oo
® bounded, non-singular, the number of parameters don’t grow
with n
* we can then approximate p(f|y) with normal distribution

2/43



Normal approximation (Laplace approximation)

e Often posterior converges to normal distribution when
n— oo

® bounded, non-singular, the number of parameters don’t grow
with n

* we can then approximate p(f|y) with normal distribution

® Laplace used this (before Gauss) to approximate the
posterior of binomial model to infer ratio of girls and boys
born
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Normal approximation (Laplace approximation)

e Often posterior converges to normal distribution when
n— oo
® bounded, non-singular, the number of parameters don’t grow
with n
* we can then approximate p(f|y) with normal distribution
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Taylor series

e We can approximate p(f|y) with normal distribution

1 1
fly) ~ —9—92>
PO ~ o0 (5050

* i.e. log posterior log p(f|y) can be approximated with a
quadratic function

log p(8ly) ~ a(6 — )2 + C
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1 1
fly) ~ —9—92>
PO ~ o0 (5050

* i.e. log posterior log p(f|y) can be approximated with a
quadratic function

log p(Oly) ~ a(0 — )%+ C
e Corresponds to Taylor series expansion around ¢ = @

f(3)(§)
3!

f(0) = F()+F(0)(6 — 6)+ fﬁz(!é)

(0—0)%+ 0—-06°3+...
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quadratic function
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e Corresponds to Taylor series expansion around ¢ = @

f(3)(§)
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f”(é\)
2!
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Taylor series
e We can approximate p(f|y) with normal distribution

2 (2 )

* i.e. log posterior log p(f|y) can be approximated with a
quadratic function

p(0ly) ~

log p(6]y) ~ a6 — 0)? + C
e Corresponds to Taylor series expansion around ¢ = @

(3 )(@)
3!

f(0) = F(O)+1(0)(0 — 0)+ fz(é)(e 0)%+ (0 —0)3 +

A

e if § is at mode, then f’( )
) 9)3 +...is small

e often when n — o, $ (

Q)
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Multivariate Taylor series

e Multivariate series expansion

UGN A21(0)

_ ) - o MNT
HOY= 1000+, (0= F50=0) = gpa=, s

0-0)+ ...
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Normal approximation

e Taylor series expansion of the log posterior around the
posterior mode ¢

2

08 P(01y) = log p(dly)+ 5 (6-0)] [d

o2 oepOY)| (0-0)4

0'=0
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Normal approximation

e Taylor series expansion of the log posterior around the
posterior mode ¢

08 P(8ly) = log 01y +5(6-0)7 | 55 ogp(0'1y)| (8-

e Multivariate normal o || ~"/2 exp (—%(9 — 6Nz -1(6 — é))
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Normal approximation

e Multivariate normal oc |Z] /2 exp (—%(9 Az - é))
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Normal approximation

e Multivariate normal oc |Z] /2 exp (—%(9 Az - é))
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Normal approximation

¢ Normal approximation

p(oly) =~ N(@, 11O
where /(0) is called observed information

2

1(6) =~ &5 log p(01y)
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Normal approximation

¢ Normal approximation

p(oly) =~ N(@, 11O

where /(0) is called observed information
a2

1(0) = — 52 log P(0]y)

Hessian H(8) = —1(0)
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Normal approximation

¢ /(0) is called observed information

2

d
5 log p(0]y)

1) =~

* /(0) is the second derivatives at the mode and thus
describes the curvature at the mode A

e if the mode is inside the parameter space, /(6) is positive

e if § is a vector, then /(9) is a matrix
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Normal approximation

e BDAS Ch 4 has an example where it is easy to compute first
and second derivatives and there is easy analytic solution to
find where the first derivatives are zero
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Normal approximation — numerically

¢ Normal approximation can be computed numerically

e jterative optimization to find a mode (may use gradients)
* autodiff or finite-difference for gradients and Hessian
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Normal approximation — numerically

¢ Normal approximation can be computed numerically

e jterative optimization to find a mode (may use gradients)

* autodiff or finite-difference for gradients and Hessian
® eg.in R, demo4_1.R:

bioassayfun <- function(w, df) {
z <— w[1] + w[2]=df$x
-sum(df$y «(z) - df$n«logip(exp(z)))

theta0 <- ¢(0,0)

optimres <- optim (w0, bioassayfun, gr=NULL, dfi1, hessian=T)
thetahat <- optimres$par
Sigma <- solve (optimres$hessian)
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Normal approximation — numerically

¢ Normal approximation can be computed numerically

e jterative optimization to find a mode (may use gradients)
* autodiff or finite-difference for gradients and Hessian

e CmdStan(R) has Laplace algorithm
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e CmdStan(R) has Laplace algorithm

® uses L-BFGS quasi-Newton optimization algorithm for
finding the mode

® uses autodiff for gradients

¢ uses finite differences of gradients to compute Hessian
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Normal approximation — numerically

¢ Normal approximation can be computed numerically
e jterative optimization to find a mode (may use gradients)
* autodiff or finite-difference for gradients and Hessian
e CmdStan(R) has Laplace algorithm
® uses L-BFGS quasi-Newton optimization algorithm for
finding the mode

® uses autodiff for gradients
¢ uses finite differences of gradients to compute Hessian

® second order autodiff in progress
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Normal approximation

¢ Optimization and computation of Hessian requires usually
much less density evaluations than MCMC
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much less density evaluations than MCMC

* |In some cases accuracy is sufficient

® In some cases accuracy for a conditional distribution is
sufficient (Ch 13)
® e.g. Gaussian latent variable models, such as Gaussian
processes (Ch 21) and Gaussian Markov random fields
® Rasmussen & Williams: Gaussian Processes for Machine
Learning
® CS-E4895 - Gaussian Processes (in spring)
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Normal approximation

¢ Optimization and computation of Hessian requires usually
much less density evaluations than MCMC

* |In some cases accuracy is sufficient

® In some cases accuracy for a conditional distribution is
sufficient (Ch 13)
® e.g. Gaussian latent variable models, such as Gaussian
processes (Ch 21) and Gaussian Markov random fields
® Rasmussen & Williams: Gaussian Processes for Machine
Learning
® CS-E4895 - Gaussian Processes (in spring)

e Accuracy can be improved by importance sampling (Ch 10)
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Example: Importance sampling in Bioassay
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Example: Importance sampling in Bioassay
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Example: Importance sampling in Bioassay

Grid

Normal

05 00 05
LD50 = -a/B

-05 0.0 0.5
LD50 = -a/B,p>0

But the normal approximation is not that good here:
Grid sd(LD50) ~ 0.1, Normal sd(LD50) = .75!
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Example: Importance sampling in Bioassay
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Example: Importance sampling in Bioassay
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Normal approximation

e Accuracy can be improved by importance sampling

¢ Pareto-k diagnostic of importance sampling weights can be
used for diagnostic

* in Bioassay example k = 0.57, which is ok
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Normal approximation

e Accuracy can be improved by importance sampling

¢ Pareto-k diagnostic of importance sampling weights can be
used for diagnostic

* in Bioassay example k = 0.57, which is ok

e CmdStan(R) has Laplace algorithm
® since version 2.33 (2023)

+ Pareto-k diagnostic via posterior package
+ importance resampling (IR) via posterior package
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Normal approximation and parameter transformations

¢ Normal approximation is not good for parameters with
bounded or half-bounded support

® e.g. 0 € [0, 1] presenting probability
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Normal approximation and parameter transformations

¢ Normal approximation is not good for parameters with
bounded or half-bounded support

® e.g. 0 € [0, 1] presenting probability

e Stan code can include constraints
real<lower=,upper=0> theta;

e for this, Stan does the inference in unconstrained space
using logit transformation

® density of the transformed parameter needs to include
Jacobian of the transformation (BDAS3 p. 21)
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Normal approximation and parameter transformations

Binomial model y ~ Bin(6#, N), with data y =9, N = 10
With Beta(1, 1) prior, the posterior is Beta(9 + 1,1+ 1)

p(6ly)

O.E)O 0.é5 0.1‘30 0.|75 1.60
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Normal approximation and parameter transformations
With Beta(1, 1) prior, the posterior is Beta(9 + 1,1+ 1)

Stan computes only the unnormalized posterior q(6|y)

a(e]y)=exp(lp_)

0.00 0.25 0.50 0.75 1.00
0 16/43



Normal approximation and parameter transformations
With Beta(1, 1) prior, the posterior is Beta(9 + 1,1+ 1)

For illustration purposes we normalize Stan result q(0|y)

O.E)O 0.é5 1.60
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Normal approximation and parameter transformations
With Beta(1, 1) prior, the posterior is Beta(9 + 1,1+ 1)

Beta(9 + 1,1 + 1), but x-axis shows the unconstrained logit(6)

logit(©) 18/43



Normal approximation and parameter transformations

...but we need to take into account the absolute value of the
determinant of the Jacobian of the transformation 6(1 — 6)

jacobian=TRUE

ocq(9|y)6(1 i) Jacof)a]n FALSE

logit(6) 19/43



Normal approximation and parameter transformations
...but we need to take into account Jacobian 6(1 — 0)

Let’'s compare a wrong normal approximation...

jacobian=TRUE

\ jacobian=FALSE
«8ly)61 —6) \=a08)

«q(ely)

logit(8) 20/43



Normal approximation and parameter transformations
...but we need to take into account Jacobian 6(1 — 0)

Let’s compare a wrong normal approximation and correct one

jacobian=TRUE /

\ jacobian=FALSE
«g(ely)e(1-e) | \ecate)

«q(ely)

logit(8) 21/43



Normal approximation and parameter transformations
Let’s compare a wrong normal approximation and correct one

Sample from both approximations and show KDEs for draws

Jacoblan =TRUE /
«q(ely)e 1—9).1'

logit(8) 22/43



Normal approximation and parameter transformations
Let’s compare a wrong normal approximation and correct one

Inverse transform draws and show KDEs

O.E)O 0.25
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Normal approximation and parameter transformations

Laplace approximation can be further improved with importance
resampling

0.00 0.25
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Other distributional approximations

e Higher order derivatives at the mode can be used
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Other distributional approximations

e Higher order derivatives at the mode can be used

e Split-normal and split-f by Geweke (1989) use additional
scaling along different principal axes

e Other distributions can be used (e.g. t-distribution)

® Instead of mode and Hessian at mode, e.g.

e variational inference (Ch 13)

® (CS-E4820 - Machine Learning: Advanced Probabilistic

Methods
CS-E4895 - Gaussian Processes
Stan has the ADVI algorithm (not very good implementation)
Stan has Pathfinder algorithm (CmdStanR github version)
instead of normal, methods with flexible flow transformations
® expectation propagation (Ch 13)
® speed of these is usually between optimization and MCMC

® stochastic variational inference can be even slower than

MCMC
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Pathfinder: Parallel quasi-Newton variational inference.
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Pathfinder: Parallel quasi-Newton variational inference.
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Distributional approximations
Exact, Normal at mode, Normal with variational inference
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Distributional approximations
Exact, Normal at mode, Normal with variational inference
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Grid sd(LD50) ~ 0.090,
Normal sd(LD50) ~ .75, Normal + IR sd(LD50) ~ 0.096 (Pareto-k = 0.57)
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Distributional approximations
Exact, Normal at mode, Normal with variational inference
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Variational inference

e Variational inference includes a large number of methods
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Variational inference

e Variational inference includes a large number of methods
e For a restricted set of models, possible to derive
deterministic algorithms
® can be fast and can be relatively accurate
e Using stochastic (Monte Carlo) estimation of the divergence,
possible to derive generic black box algorithms
® possible to use use also mini-batching
® can be fast and provide better predictive distribution than
Laplace approximation if the posterior is far from normal
*® in general, unlikely to achieve accuracy of HMC with the
same computation cost
e with increasing number of posterior dimensions, the obtained
approximation gets worse (Dhaka, Catalina, Andersen,
Magnusson, Huggins, and Vehtari, 2020)
® with increasing number of posterior dimensions, the
stochastic divergence estimate gets worse and flows have
problems, too (Dhaka, Catalina, Andersen, Welandawe,
Huggins, and Vehtari, 2021)
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Large sample theory

e Asymptotic normality

® as nthe number of observations y; increases the posterior
converges to normal distribution
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Large sample theory

e Asymptotic normality

® as nthe number of observations y; increases the posterior
converges to normal distribution
® can be shown by showing that
® eventually likelihood dominates the prior
¢ the higher order terms in Taylor series increase slower than
the second order term

® see counter examples
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Large sample theory

e Assume "true" underlying data distribution 7(y)

® observations yy, ..., y, are independent samples from the
joint distribution f(y)
"true" data distribution f(y) is not always well defined
in the following we proceed as if there were true underlying
data distribution
for the theory the exact form of f(y) is not important as long
at it has certain regularity conditions
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Large sample theory
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f(y) = p(y|6o) for some 6y, then posterior converges to a
point 6y, when n — co

31/43



Large sample theory

e Consistency
e if true distribution is included in the parametric family, so that
f(y) = p(y|6o) for some 6y, then posterior converges to a

point 6y, when n — co
® the same result as for maximum likelihood estimate

31/43



Large sample theory

e Consistency
e if true distribution is included in the parametric family, so that
f(y) = p(y|6o) for some 6y, then posterior converges to a
point 6y, when n — co
® the same result as for maximum likelihood estimate
e [f true distribution is not included in the parametric family,
then there is no true 6,
® true 6 is replaced with 6y which minimizes the
Kullback-Leibler divergence from f(y) to p(yi|6o)

31/43



Large sample theory

e Consistency

e if true distribution is included in the parametric family, so that
f(y) = p(y|6o) for some 6y, then posterior converges to a
point 6y, when n — co

® the same result as for maximum likelihood estimate

e [f true distribution is not included in the parametric family,
then there is no true 6,
® true 6 is replaced with 6y which minimizes the
Kullback-Leibler divergence from f(y) to p(yi|6o)
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Large sample theory — counter examples

e Under- and non-identifiability
* a model is under-identifiable, if the model has parameters or
parameter combinations for which there is no information in

the data
¢ then there is no single point 6, where posterior would

converge
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e Under- and non-identifiability
* a model is under-identifiable, if the model has parameters or
parameter combinations for which there is no information in
the data
¢ then there is no single point 6, where posterior would
converge
® e.g. if the model is

y~N(a+b+cx,0)

® posterior would converge to a line with prior determining the
density along the line
® e.g. if we never observe u and v at the same time and the

model is (5) N ((8) , C, Q)

then correlation p is non-identifiable
® e.g. uand v could be length and weight of a student; if only
one of them is measured for each student, then p is
non-identifiable

® Problem also for other inference methods like MCMC
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Asymptotic identifiability vs finite data case

¢ |f we randomly would measure both height and weight,
asymptotically the correlation p would be identifiable
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Asymptotic identifiability vs finite data case

¢ |f we randomly would measure both height and weight,
asymptotically the correlation p would be identifiable

e But a finite data from this data generating process may lack
the joint height and weight observations, and thus the the
finite data likelihood doesn’t have information about p

e [f the likelihood is weakly informative for some parameters,
priors and integration are more important
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Large sample theory — counter examples

¢ |f the number of parameter increases as the number of
observation increases
® in some models number of parameters depends on the
number of observations
* e.g. time series models y; ~ N(6;,52) and 6; has prior in time
® posterior of §; does not converge to a point, if additional
observations do not bring enough information
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Large sample theory — counter examples

¢ Aliasing (valetoisto in Finnish)

® gspecial case of under-identifiability where likelihood repeats
in separate points
® e.g. mixture of normals

P(YI|M1,#2a 0127 Uga )‘) =A N(,LL17012) + (1 - /\) N(:UQ?JS)
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¢ Aliasing (valetoisto in Finnish)
® gspecial case of under-identifiability where likelihood repeats
in separate points
® e.g. mixture of normals

(yl|ﬂ1’ﬂ230—170—27>‘)*)‘N(,u'17(71) (1 */\) N(:UQ?JS)

if (u1, p2) are switched, (02, 02) are switched and replace \
with (1 — \), model is equivalent; posterior would usually
have two modes which are mirror images of each other and
the posterior does not converge to a single point
e For MCMC makes the convergence diagnostics more
difficult, as it is difficult to identify aliasing from other
multimodality
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in the posterior

® e.g. previous normal mixture model; assume ) to be known
(and not 0 or 1); if we set uq = y; for any i and 0% — 0, then
likelihood — oo

e if prior for 02 does not go to zero when o2 — 0, then the
posterior is unbounded

® when n — oo the number of likelihood modes increases

¢ Problem for any inference method including MCMC

® can be avoided with good priors
® a prior close to a prior allowing unbounded posterior may
produce almost unbounded posterior
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Large sample theory — counter examples

® Improper posterior
® asymptotic results assume that probability sums to 1
® e.g. Binomial model, with Beta(0, 0) prior and observation
y=n
* posterior p(A|n,0) =" '(1 — )~
® when 6 — 1, then p(8|n,0) — oo
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y=n
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® Improper posterior
® asymptotic results assume that probability sums to 1
® e.g. Binomial model, with Beta(0, 0) prior and observation
y=n
® posterior p(4|n,0) = 0" "(1 — )"
® when 6 — 1, then p(8|n,0) — oo
® Problem for any inference method including MCMC
® can be avoided with proper priors
® a prior close to a improper prior may produce almost
improper posterior
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Large sample theory — counter examples

e Prior distribution does not include the convergence point

e if in discrete case p(6p) = 0 or in continuous case p(f) =0
in the neighborhood of 6y, then the convergence results
based on the dominance of the likelihood do not hold
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Large sample theory — counter examples

e Prior distribution does not include the convergence point

e if in discrete case p(6p) = 0 or in continuous case p(f) =0
in the neighborhood of 6y, then the convergence results
based on the dominance of the likelihood do not hold

e Should have a positive prior probability/density where
needed
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Large sample theory — counter examples

e Convergence point at the edge of the parameter space

e if §y is on the edge of the parameter space, Taylor series
expansion has to be truncated, and normal approximation
does not necessarily hold
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Large sample theory — counter examples

e Convergence point at the edge of the parameter space

e if §y is on the edge of the parameter space, Taylor series
expansion has to be truncated, and normal approximation

does not necessarily hold
® e.g. yi ~ N(6,1) with a restriction # > 0 and assume that

0o =
® posterior of 6 is left truncated normal distribution with . = y
® in the limit n — oo posterior is half normal distribution

e Can be easy or difficult for MCMC
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Frequency evaluations

e Bayesian theory has epistemic and aleatory probabilities

* Frequency evaluations focus on frequency properties given
aleatoric repetition of an observation and modeling

* ltis useful to examine these for Bayesian inference, too
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Frequency evaluations

e Bayesian theory has epistemic and aleatory probabilities

* Frequency evaluations focus on frequency properties given
aleatoric repetition of an observation and modeling
* ltis useful to examine these for Bayesian inference, too
* Asymptotic unbiasedness
® not that important in Bayesian inference, small and
decreasing error more important
* Asymptotic efficiency
® no other point estimate with smaller squared error
e useful also in Bayesian inference, but should consider which
utility/loss is important
e Calibration
® «%-posterior interval has the true value in a% cases
* o%-predictive interval has the true future values in % cases
® approximate calibration with shorter intervals for likely true
values more important than exact calibration with very bad
intervals for all possible values.
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Frequentist statistics

¢ Frequentist statistics accepts only aleatory probabilities

* Estimates are based on data

® Uncertainty of estimates are based on all possible data sets
which could have been generated by the data generating
mechanism
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Frequentist statistics

¢ Frequentist statistics accepts only aleatory probabilities

* Estimates are based on data
® Uncertainty of estimates are based on all possible data sets
which could have been generated by the data generating
mechanism
® inference is based also on data we did not observe
e Estimates are derived to fulfill frequency properties
* Maximum likelihood (often) fulfills asymptotic frequency
properties
® Common finite data desiderata are 1) unbiasedness, 2)
minimum variance, 3) calibration of confidence interval
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e Estimates are derived to fulfill frequency properties
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® Common desiderata are 1) unbiasedness, 2) minimum
variance, 3) calibration of confidence interval
* Requirement of unbiasedness may lead to higher variance
or silly estimates
® unbiased estimate for strictly positive parameter can be
negative
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Frequentist statistics

¢ Estimates are derived to fulfill frequency properties
* Maximum likelihood fulfills just asymptotic frequency
properties
® Common desiderata are 1) unbiasedness, 2) minimum
variance, 3) calibration of confidence interval
* Requirement of unbiasedness may lead to higher variance
or silly estimates
® unbiased estimate for strictly positive parameter can be
negative
e Confidence interval is defined to have true value inside the
interval in % cases of repeated data generation from the
data generating mechanism
® doesn’t need be useful to have perfect calibration
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Frequentist vs Bayes vs others

e There is a great amount of very useful frequentist statistics

® also for simple models and lot’s of data there is not much
difference
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Frequentist vs Bayes vs others

e There is a great amount of very useful frequentist statistics

® also for simple models and lot’s of data there is not much
difference

¢ Bayesian inference

® easier for complex, e.g. hierarchical, models
® easier when model changes
® a consistent way to add prior information

¢ A lot of machine learning is not pure frequentist or Bayesian,
but there is often a probabilistic flavor
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