
Chapter 4

• 4.1 Normal approximation (Laplace’s method)
• 4.2 Large-sample theory
• 4.3 Counter examples

• includes examples of difficult posteriors for MCMC, too
• 4.4 Frequency evaluation*
• 4.5 Other statistical methods*
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Normal approximation (Laplace approximation)

• Often posterior converges to normal distribution when
n → ∞

• bounded, non-singular, the number of parameters don’t grow
with n

• we can then approximate p(θ|y) with normal distribution

• Laplace used this (before Gauss) to approximate the
posterior of binomial model to infer ratio of girls and boys
born
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Normal approximation (Laplace approximation)

• Often posterior converges to normal distribution when
n → ∞

• bounded, non-singular, the number of parameters don’t grow
with n

• we can then approximate p(θ|y) with normal distribution
• Laplace used this (before Gauss) to approximate the

posterior of binomial model to infer ratio of girls and boys
born
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Normal approximation (Laplace approximation)

• Often posterior converges to normal distribution when
n → ∞

• bounded, non-singular, the number of parameters don’t grow
with n

• we can then approximate p(θ|y) with normal distribution

• Laplace used this (before Gauss) to approximate the
posterior of binomial model to infer ratio of girls and boys
born
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Taylor series

• We can approximate p(θ|y) with normal distribution

p(θ|y) ≈ 1√
2πσθ

exp

(
− 1

2σ2
θ

(θ − θ̂)2
)

• i.e. log posterior log p(θ|y) can be approximated with a
quadratic function

log p(θ|y) ≈ α(θ − θ̂)2 + C

• Corresponds to Taylor series expansion around θ = θ̂

f (θ) = f (θ̂)+f ′(θ̂)(θ − θ̂)+
f ′′(θ̂)

2!
(θ−θ̂)2+

f (3)(θ̂)
3!

(θ − θ̂)3 + . . .

• if θ̂ is at mode, then f ′(θ̂) = 0
• often when n → ∞, f (3)(θ̂)

3! (θ − θ̂)3 + . . . is small
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Multivariate Taylor series

• Multivariate series expansion

f (θ) = f (θ̂)+
df (θ′)
dθ′ θ′=θ̂

(θ − θ̂)+
1
2!
(θ−θ̂)T d2f (θ′)

dθ′2 θ′=θ̂
(θ−θ̂)+ . . .
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Normal approximation

• Taylor series expansion of the log posterior around the
posterior mode θ̂

log p(θ|y) = log p(θ̂|y)+1
2
(θ−θ̂)T

[
d2

dθ2 log p(θ′|y)
]
θ′=θ̂

(θ−θ̂)+. . .

• Multivariate normal ∝ |Σ|−1/2 exp
(
−1

2(θ − θ̂T )Σ−1(θ − θ̂)
)
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Normal approximation

• Normal approximation

p(θ|y) ≈ N(θ̂, [I(θ̂)]−1)

where I(θ) is called observed information

I(θ) = − d2

dθ2 log p(θ|y)

Hessian H(θ) = −I(θ)
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Normal approximation

• I(θ) is called observed information

I(θ) = − d2

dθ2 log p(θ|y)

• I(θ̂) is the second derivatives at the mode and thus
describes the curvature at the mode

• if the mode is inside the parameter space, I(θ̂) is positive
• if θ is a vector, then I(θ) is a matrix
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Normal approximation

• BDA3 Ch 4 has an example where it is easy to compute first
and second derivatives and there is easy analytic solution to
find where the first derivatives are zero
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Normal approximation – numerically

• Normal approximation can be computed numerically
• iterative optimization to find a mode (may use gradients)
• autodiff or finite-difference for gradients and Hessian

• e.g. in R, demo4_1.R:
bioassayfun <- function(w, df) {

z <- w[1] + w[2]*df$x
-sum(df$y*(z) - df$n*log1p(exp(z)))

}

theta0 <- c(0,0)
optimres <- optim(w0, bioassayfun, gr=NULL, df1, hessian=T)
thetahat <- optimres$par
Sigma <- solve(optimres$hessian)
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Normal approximation – numerically

• Normal approximation can be computed numerically
• iterative optimization to find a mode (may use gradients)
• autodiff or finite-difference for gradients and Hessian

• CmdStan(R) has Laplace algorithm

• uses L-BFGS quasi-Newton optimization algorithm for
finding the mode

• uses autodiff for gradients
• uses finite differences of gradients to compute Hessian

• second order autodiff in progress
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Normal approximation

• Optimization and computation of Hessian requires usually
much fewer density evaluations than MCMC

• In some cases accuracy is sufficient
• In some cases accuracy for a conditional distribution is

sufficient (Ch 13)
• e.g. Gaussian latent variable models, such as Gaussian

processes (Ch 21) and Gaussian Markov random fields
• Rasmussen & Williams: Gaussian Processes for Machine

Learning
• CS-E4895 - Gaussian Processes (in spring)

• Accuracy can be improved by importance sampling (Ch 10)
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Example: Importance sampling in Bioassay
G
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But the normal approximation is not that good here:
Grid sd(LD50) ≈ 0.1, Normal sd(LD50) ≈ .75!
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Grid sd(LD50) ≈ 0.1, IS sd(LD50) ≈ 0.1
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Normal approximation

• Accuracy can be improved by importance sampling
• Pareto-k diagnostic of importance sampling weights can be

used for diagnostic
• in Bioassay example k = 0.57, which is ok

• CmdStan(R) has Laplace algorithm
• since version 2.33 (2023)

+ Pareto-k diagnostic via posterior package
+ importance resampling (IR) via posterior package
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Normal approximation and parameter transformations

• Normal approximation is not good for parameters with
bounded or half-bounded support

• e.g. θ ∈ [0,1] presenting probability

• Stan code can include constraints
real<lower=0,upper=0> theta;

• for this, Stan does the inference in unconstrained space
using logit transformation

• density of the transformed parameter needs to include
Jacobian of the transformation (BDA3 p. 21)
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Normal approximation and parameter transformations
Binomial model y ∼ Bin(θ,N), with data y = 9,N = 10

With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)
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Normal approximation and parameter transformations
With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)

Stan computes only the unnormalized posterior q(θ|y)
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Normal approximation and parameter transformations
With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)

For illustration purposes we normalize Stan result q(θ|y)

17 / 30



Normal approximation and parameter transformations
With Beta(1,1) prior, the posterior is Beta(9 + 1,1 + 1)

Beta(9 + 1,1 + 1), but x-axis shows the unconstrained logit(θ)
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Normal approximation and parameter transformations
...but we need to take into account the absolute value of the
determinant of the Jacobian of the transformation θ(1 − θ)
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Normal approximation and parameter transformations
...but we need to take into account Jacobian θ(1 − θ)

Let’s compare a wrong normal approximation...
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Normal approximation and parameter transformations
...but we need to take into account Jacobian θ(1 − θ)

Let’s compare a wrong normal approximation and correct one
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Normal approximation and parameter transformations
Let’s compare a wrong normal approximation and correct one

Sample from both approximations and show KDEs for draws
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Normal approximation and parameter transformations
Let’s compare a wrong normal approximation and correct one

Inverse transform draws and show KDEs
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Normal approximation and parameter transformations
Laplace approximation can be further improved with importance
resampling
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Other distributional approximations

• Higher order derivatives at the mode can be used

• Split-normal and split-t by Geweke (1989) use additional
scaling along different principal axes

• Other distributions can be used (e.g. t-distribution)
• Instead of mode and Hessian at mode, e.g.

• variational inference (Ch 13)
• CS-E4820 - Machine Learning: Advanced Probabilistic

Methods
• CS-E4895 - Gaussian Processes
• Stan has the ADVI algorithm (not very good implementation)
• Stan has Pathfinder algorithm (CmdStanR, brms)
• instead of normal, methods with flexible flow transformations

• expectation propagation (Ch 13)
• speed of these is usually between optimization and MCMC

• stochastic variational inference can be even slower than
MCMC
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Pathfinder: Parallel quasi-Newton variational inference.
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Zhang, Carpenter, Gelman, and Vehtari (2022). Pathfinder: Parallelquasi-Newton variational inference. Journal of Machine Learning Research,
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Pathfinder: Parallel quasi-Newton variational inference.
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Pathfinder: Parallel quasi-Newton variational inference.
Birthdays case study uses Pathfinder to speed up workflow
https://users.aalto.fi/~ave/casestudies/Birthdays/birthdays.html
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Distributional approximations
Exact, Normal at mode, Normal with variational inference
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Variational inference

• Variational inference includes a large number of methods

• For a restricted set of models, possible to derive
deterministic algorithms

• can be fast and can be relatively accurate
• Using stochastic (Monte Carlo) estimation of the divergence,

possible to derive generic black box algorithms

• possible to use use also mini-batching
• can be fast and provide better predictive distribution than

Laplace approximation if the posterior is far from normal
• in general, unlikely to achieve accuracy of HMC with the

same computation cost
• with increasing number of posterior dimensions, the obtained

approximation gets worse (Dhaka, Catalina, Andersen,
Magnusson, Huggins, and Vehtari, 2020)

• with increasing number of posterior dimensions, the
stochastic divergence estimate gets worse and flows have
problems, too (Dhaka, Catalina, Andersen, Welandawe,
Huggins, and Vehtari, 2021)
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brms supports Laplace / Pathfinder / ADVI

These might be useful for initializng MCMC or big data. The
ADVI implementation is not very good.

fit1 <- brm(..., algorithm = "laplace")

fit1 <- brm(..., algorithm = "pathfinder")

fit1 <- brm(..., algorithm = "meanfield")

fit1 <- brm(..., algorithm = "fullrank")
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