
Chapter 9 Decision Analysis

• 9.1 Context and basic steps (most important part)

• 9.2 Example

• 9.3 Multistage decision analysis (example)

• 9.4 Hierarchical decision analysis (example)

• 9.5 Personal vs. institutional decision analysis



Bayesian decision theory

• Potential decisions d
- or actions a

• Potential consequences x
- x may be categorical, ordinal, real, scalar, vector, etc.

• Probability distributions of consequences given decisions
p(x | d)

- in decision making the decisions are controlled and thus
p(d) does not exist

• Utility function U(x) maps consequences to real value
- e.g. euro or expected lifetime
- instead of utility sometimes cost or loss is defined

• Expected utility E[U(x) | d] =
∫

U(x)p(x | d)dx

• Choose decision d∗, which maximizes the expected utility

d∗ = arg max
d

E[U(x) | d]
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Example of decision making: 2 choices
• Helen is going to pick mushrooms in a forest, while she notices

a paw print which could made by a dog or a wolf

• Helen measures that the length of the paw print is 14 cm and
goes home to Google how big paws dogs and wolves have, and
tries then to infer which animal has made the paw print
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C= Wolf
C= Big dog

observed length has been marked with a horizontal line

• Likelihood of wolf is 0.92 (alternative being dog)
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Example of decision making

• Helen assumes also that in her living area there are about one
hundred times more free running dogs than wolves, that is a
priori probability for wolf, before observation is 1%.

• Likelihood and posterior
Animal Likelihood Posterior probability
Wolf 0.92 0.10
Dog 0.08 0.90

• Posterior probability of wolf is 10%
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Example of decision making

• Helen has to make decision whether to go pick mushrooms

• If she doesn’t go to pick mushrooms utility is zero

• Helen assigns positive utility 1 for getting fresh mushrooms

• Helen assigns negative utility -1000 for a event that she goes to
the forest and wolf attacks (for some reason Helen assumes
that wolf will always attack)

Animal
Decision d Wolf Dog
Stay home 0 0
Go to the forest -1000 1

Utility matrix U(x)

Expected utility
Action d E[U(x) | d]
Stay home 0
Go to the forest -100+0.9

Utilities for different actions
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Example of decision making

• Maximum likelihood decision would be to assume that there is a
wolf

• Maximum posterior decision would be to assume that there is a
dog

• Maximum utility decision is to stay home, even if it is more likely
that the animal is dog

• Example illustrates that the uncertainties (probabilities) related
to all consequences need to be carried on until final decision
making
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Example of decision making: several choices

• You decide to earn money by selling a seasonal product
- You pay 7€ per each, and sell them 10€ each
- You need to decide how many (N) items to buy

- You ask your friends how many they used to sell and
estimate a distribution for how many you might sell
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most likely value
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Example of decision making: several choices

most likely value
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Decision making in sales

• Common task in commerce and restaurants



Challenges in decision making

• Actual utility functions are rarely linear

- the expected utility is 5€ for
a) 100% of receiving 5€
b) 50% of losing 1M€ and 50% of winning 1M€ + 10€

- most gambling has negative expected utility
(but the excitement of the game may have positive utility)

• What is the cost of human life?

• Multiple parties having different utilities
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Model selection as decision problem

• Choose the model that maximizes the expected utility of using
the model to make predictions / decisions in the future



Multi-stage decision making (Section 9.3)

• 95 year old has a tumor that is malignant with 90% prob

• Based on statistics

- expected lifetime is 34.8 months if no cancer
- expected lifetime is 16.7 months if cancer and radiation

therapy is used
- expected lifetime is 20.3 months if cancer and surgery, but

the probability of dying in surgery is 35% (for 95 year old)
- expected lifetime is 5.6 months if cancer and no treatment

• Which treatment to choose?

- quality adjusted life time
- 1 month is subtracted for the time spent in treatments

• Quality adjusted life time

- See the book for the multi-stage decision making
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Design of experiment

• Which experiment would give most additional information
- decide values xn+1 for the next experiment
- which values of xn+1 would reduce the posterior uncertainty

or increase the expected utility most

• Example 1
- biopsy in the cancer example

• Example 2
- imagine that in bioassay the posterior uncertainty of LD50

is too large
- which dose should be used in the next experiment to

reduce the variance of LD50 as much as possible ?
· this way less experiments need to be made (and less

animals need to be killed)
• Example 3

- optimal paper helicopter wing length
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Bayesian optimization

• Design of experiment
• Used to optimize, for example,

- machine learning / deep learning model structures,
regularization, and learning algorithm parameters

- material science
- engines
- drug testing
- part of Bayesian inference for stochastic simulators



Bayesian optimization of wing length

Start with a small number of experiments
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• Thompson sampling:
- pick one posterior draw (function)
- find the wing length corresponding to the max. of that draw
- make the next observation with that wing length



Bayesian optimization of wing length

Gaussian process model
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• Thompson sampling:
- pick one posterior draw (function)
- find the wing length corresponding to the max. of that draw
- make the next observation with that wing length



Bayesian optimization of wing length

Gaussian process model – posterior draws
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• Thompson sampling:
- pick one posterior draw (function)
- find the wing length corresponding to the max. of that draw
- make the next observation with that wing length



Bayesian optimization of wing length

Gaussian process model – posterior draws
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• Thompson sampling:
- pick one posterior draw (function)
- find the wing length corresponding to the max. of that draw
- make the next observation with that wing length



Bayesian optimization of wing length

Gaussian process model – Thompson sampling
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• Thompson sampling:
- pick one posterior draw (function)
- find the wing length corresponding to the max. of that draw
- make the next observation with that wing length



Bayesian optimization of wing length

Gaussian process model – Thompson sampling
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• Thompson sampling:
- pick one posterior draw (function)
- find the wing length corresponding to the max. of that draw
- make the next observation with that wing length
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Gaussian process model – Thompson sampling
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Bayesian optimization of wing length

145 observations

mode = 10.1cm

33 BO observations

mode = 10.6cm

33 observations

mode = 11cm

2 4 6 8 10 12 14
Wing length (cm) that maximizes the flight time

33 BO obs. post. Wasserstein-1 distance ≈ 0.77
33 first obs. post. Wasserstein-1 distance ≈ 1.36

We obtain about 50% increase in efficiency
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Examples of big Bayesian decision making success stories

• Bayesian optimization of ML algorithms

• Bayesian optimization of new medical molecules

• Bayesian optimization of new materials

• A/B testing

• Customer retention / satisfaction

• Marketing


