# Assignment 3 

anonymous

## 1 General information

## 2 Inference for normal mean and deviation (3 points)

Loading the library and the data.

```
data("windshieldy1")
# The data are now stored in the variable `windshieldy1`.
# The below displays the data:
windshieldy1
```

[1] $13.35714 .928 \quad 14.89615 .29714 .82012 .06714 .82413 .86517 .447$

The below data is only for the tests, you need to change to the full data windshieldy1 when reporting your results.

```
windshieldy_test <- c(13.357, 14.928, 14.896, 14.820)
```


## 2.1 (a)

Write your answers here!

## 2.2 (b)

Write your answers and code here!
Keep the below name and format for the functions to work with markmyassignment:

```
# Useful functions: mean(), length(), sqrt(), sum()
# and qtnew(), dtnew() (from aaltobda)
mu_point_est <- function(data) {
    # Do computation here, and return as below.
    # This is the correct return value for the test data provided above.
    14.5
}
mu_interval <- function(data, prob = 0.95) {
    # Do computation here, and return as below.
```

\# This is the correct return value for the test data provided above. c(13.3, 15.7)
\}

You can plot the density as below if you implement mu_pdf to compute the PDF of the posterior $p(\mu \mid y)$ of the average hardness $\mu$.

```
mu_pdf <- function(data, x){
    # Compute necessary parameters here.
    # These are the correct parameters for `windshieldy_test`
    # with the provided uninformative prior.
    df = 3
    location = 14.5
    scale = 0.3817557
    # Use the computed parameters as below to compute the PDF:
    dtnew(x, df, location, scale)
}
x_interval = mu_interval(windshieldy1, .999)
lower_x = x_interval[1]
upper_x = x_interval[2]
x = seq(lower_x, upper_x, length.out=1000)
plot(
    x, mu_pdf(windshieldy1, x), type="l",
    xlab=TeX(r'(average hardness $\mu$)'),
    ylab=TeX(r'(PDF of the posterior $p(\muly)$)')
)
```

PDF of the posterior $p(\mu \mid y)$


Figure 1: PDF of the posterior $p(\mu \mid y)$ of the average hardness $\mu$

## 2.3 (c)

Write your answers and code here!

## Keep the below name and format for the functions to work with markmyassignment:

```
# Useful functions: mean(), length(), sqrt(), sum()
# and qtnew(), dtnew() (from aaltobda)
mu_pred_point_est <- function(data) {
        # Do computation here, and return as below.
    # This is the correct return value for the test data provided above.
    14.5
}
mu_pred_interval <- function(data, prob = 0.95) {
    # Do computation here, and return as below.
    # This is the correct return value for the test data provided above.
    c(11.8, 17.2)
}
```

You can plot the density as below if you implement mu_pred_pdf to compute the PDF of the posterior predictive $p(\tilde{y} \mid y)$ of a new hardness observation $\tilde{y}$.

```
mu_pred_pdf <- function(data, x){
    # Compute necessary parameters here.
    # These are the correct parameters for `windshieldy_test`
    # with the provided uninformative prior.
    df = 3
    location = 14.5
    scale = 0.8536316
    # Use the computed parameters as below to compute the PDF:
    dtnew(x, df, location, scale)
}
x_interval = mu_pred_interval(windshieldy1, .999)
lower_x = x_interval[1]
upper_x = x_interval[2]
x = seq(lower_x, upper_x, length.out=1000)
plot(
    x, mu_pred_pdf(windshieldy1, x), type="l",
    xlab=TeX(r'(new hardness observation $\tilde{y}$)'),
    ylab=TeX(r'(PDF of the posterior predictive $p(\tilde{y}|y)$)')
)
```



Figure 2: PDF of the posterior predictive $p(\tilde{y} \mid y)$ of a new hardness observation $\tilde{y}$

## 3 Inference for the difference between proportions (3 points)

## 3.1 (a)

Write your answers here!

## 3.2 (b)

Write your answers and code here!
The below data is only for the tests:

```
set.seed(4711)
ndraws = 1000
p0 = rbeta(ndraws, 5, 95)
p1 = rbeta(ndraws, 10, 90)
```

Keep the below name and format for the functions to work with markmyassignment:
\# Useful function: mean(), quantile()
posterior_odds_ratio_point_est <- function(p0, p1) \{
\# Do computation here, and return as below.
\# This is the correct return value for the test data provided above.
2.650172
\}
posterior_odds_ratio_interval <- function(p0, p1, prob = 0.95) \{

```
# Do computation here, and return as below.
```

\# This is the correct return value for the test data provided above.
c (0.6796942,7.3015964)
\}

## 3.3 (c)

Write your answers and code here!

## 4 Inference for the difference between normal means (3 points)

Loading the library and the data.

```
data("windshieldy2")
# The new data are now stored in the variable `windshieldy2`.
# The below displays the first few rows of the new data:
head(windshieldy2)
```

[1] $15.98014 .20616 .011 \quad 17.25015 .99315 .722$

## 4.1 (a)

Write your answers here!

## 4.2 (b)

Write your answers and code here!

```
# Useful functions: mean(), length(), sqrt(), sum(),
# rtnew() (from aaltobda), quantile() and hist().
```


## 4.3 (c)

Write your answers here!

