Classroom activities in applied regression and causal inference, accelerated one-semester course¹

Andrew Gelman and Aki Vehtari

¹For details, see *Active Statistics*, by Andrew Gelman and Aki Vehtari, Cambridge University Press (2023), http://www.stat.columbia.edu/~gelman/active-statistics/.

Class 1a: Introduction to quantitative social science

Story

Wikipedia experiment

Label		Number of suc	cesses	Number of trials		
dsn_cnt		4861		954630		Remove
dsn_squareCorners		4695		1082180		Remove
Interval confidence le	vel:					
0.95			Use multiple	testing correction: 🗸		
Compute Add an	nother group					
	Successes T	otal Succes	s Rate		p-value Im	provement
dsn_cnt	4,861 9	54,630 0.5% (0.	- 0.52% - - 51%)	+		
dsn_squareCorners	4,695 1	,082,180 0.42%, (0.	 0.45% 14600 43%)		< 0.0001 -1	9%11% (-15%)

Wikipedia experiment

i To all our readers in the UK,

Please don't scroll past this. This Thursday, for the 1st time recently, we humbly ask you to defend Wikipedia's independence. 98% of our readers don't give; they look the other way. If you donate just £2, or whatever you can this Thursday, Wikipedia could keep thriving for years. Most people donate because Wikipedia is useful. If Wikipedia has given you £2 worth of knowledge, take a minute to donate. Show the editors who bring you neutral and verified information that their work matters. If you are one of our rare donors, you have our gratitude and we warmly thank you. Your donation matters.

Problems donating? [Other ways to give [Festementh saked questions]: We never sell your information. By submitting, you are agreeing to our donor dance; capica; and a sharing your information with the <u>Wittener</u> Enclandstare and its envice providers in the U.S. and issenders. recurring donation, you will be debited by the Wikimedia Foundation until you notify us to stop. We'll send you an email which will include a link to <u>says</u> capitalisation incrutors.

1. How often would you like to donate? Just once O Give monthly 2. Select an amount (GBP) The average donation is £10. ○ £10 O £2 O £15 ○ £25 ○ £50 ○ £75 — £100 ○ Other 3. Please select a payment method WSA CO PayPal -----

Maybe later

1 To all our readers in the UK,

Please don't scroll past this. This Thursday, for the 1st time recently, we humbly ask you to defend Wikipedia's independence. 98% of our readers don't give; they look the other way. If you donate just £2, or whatever you can this Thursday, Wikipedia could keep thriving for years. Most people donate because Wikipedia is useful. If Wikipedia has given you £2 worth of knowledge, take a minute to donate. Show the editors who bring you neutral and verified information that their work matters. If you are one of our rare donors, you have our gratitude and we warmly thank you. Your donation matters.

Problems dotating? (Other ways is a wine Freemann based substitute) if where sell your information. By submitting, you are agreeing to courding abages capity, and a busing your information with the <u>Witkingking Econdation</u> and to service providers in the U.S. and elsewhere it you make a recurring dotation, you will be debited by the Witkinedia Foundation until you notify us to stop. We'll send you an email which will include a link to <u>says</u> concellation instructions.

1. How other would you like to donate? Just once Orive monthly Subset an amount (GBP) The average donation is £10 £2 £10 £15 £50 £00 Other Please select a payment method

Maybe later

Wikipedia experiment

Activity

Designing a social science study

- 1. Treatments
- 2. Population
- 3. Sample
- 4. Treatment assignment
- 5. Pre-test measurement
- 6. Outcome measurement

Introduction to the course

Topics

- Goals of the course
- Components of the course
- Structure of each class period
- Students' responsibilities
- Roles of mathematics, computing, and applications

Computer demonstration

Drill

Generalizing

- 1. From sample to population
- 2. From treatment to control group
- 3. From measurement to underlying construct

Class 1b: Overview of applied regression

Story

Literary Digest poll

Activity

Candy weighing

- 1. Pull 5 candies out of the bag
- 2. Weigh the candies
- 3. Write down the weight
- 4. Put the candies back in the bag!!
- 5. Pass the scale and bag to your neighbors
- 6. Silently multiply the weight of the 5 candies by 20

Discuss reading and homework

Computer demonstration

Drill

Describing a fitted regression in words

Summarize the slope for the underlined variable, first wrongly and then correctly.

Discussion problem

Height and earnings

earnings = -26000 + 600 * height + 10600 * male + error

Class 2a: Data collection and visualization

Story

Using the "graphs as comparisons" idea to redraw a graph

Using the "graphs as comparisons" idea to redraw a graph

Activity

Measuring handedness

Please indicate which hand you use for each of the following activities by putting a + in the appropriate column, or ++ if you use would never use the other hand for that activity. If in any case you are really indifferent, put + in both columns. Some of the activities require both hands. In these cases the part of the task, or object, for which hand preference is wanted is indicated in parentheses.

Task	Left	Right
Writing		
Drawing		
Throwing		
Scissors		
Toothbrush		
Spoon		
Total		

Measuring handedness

Measuring handedness

Please indicate which hand you use for each of the following activities by putting a + in the appropriate column, or ++ if you use would never use the other hand for that activity. If in any case you are really indifferent, put + in both columns. Some of the activities require both hands. In these cases the part of the task, or object,

Some of the activities require both hands. In these cases the part of the task, or object, for which hand preference is wanted is indicated in parentheses.

Task	Left	Right
Writing		
Drawing		
Throwing		
Scissors		
Toothbrush		
Knife (without fork)		
Spoon		
Broom (upper hand)		
Striking match (hand that holds the match)		
Opening box (hand that holds the lid)		
Total		

Discuss reading and homework

Computer demonstration

Drill

All graphs are comparisons

Identify the implicit or explicit comparison that is facilitated by each graph.
All graphs are comparisons

Correlation of opposition to health care reform with...

All graphs are comparisons

All graphs are comparisons

Mortality rates in the Crimean War from April 1854 to March 1856

Discussion problem

Class 2b: Basics of math and probability

Story

Death rate in the pandemic

Death rate above and below normal in the U.S.

Death rate in the pandemic

Death rate in the U.S. over time

Death rate in the pandemic

Activity

Amoebas and population growth

Exponential growth:

$$y = A \exp(bx)$$
$$\log y = a + bx$$

Exponential decline:

$$y = A \exp(-bx)$$
$$\log y = a - bx$$

Discuss reading and homework

Computer demonstration

Drill

Straight lines

Give R code to graph these lines.

Discussion problem

Squares, cubes, and metabolic rates

Power-law growth:

$$y = Ax^b$$

$$\log y = a + b \log x$$

Power-law decline

$$y = Ax^{-b}$$
$$\log y = a - b \log x$$

Class 3a: Statistical inference

Story

They got the wrong standard error

· · · · ·	Response Yes	Margin of Error +/-
Was the SIU assigned to the case?	4.1%	0.5%
Were other anti-fraud professionals assigned or alerted?	2.0%	0.3%
Was there an indication in file of suspected fraud, particularly with regard to a staged accident or exaggerated medical care, medical bills, and loss or earnings?	45.7%	1.9%

Story

Claims of implausibly large effects

Labor Market Returns to Early Childhood Stimulation: a 20-year Followup to an Experimental Intervention in Jamaica

Paul Gertler, James Heckman, Rodrigo Pinto, Arianna Zanolini, Christel Vermeersch, Susan Walker, Susan M. Chang, Sally Grantham-McGregor

We find large effects on the earnings of participants from a randomized intervention that gave psychosocial stimulation to stured Jamaican todellis living in poverty. The intervention consisted of one-how weekly visits from community Jamaican health workres over a 2-year period that taught parenting skills and encouraged mothers to interact and play with their children in ways that would develop their children's cognitive and personality skills. We re-interviewed the study participants 20 years after the intervention. Stimulation increased the average earnings of participants by 42 percent. Treatment group earnings caught up to the earnings of a matched non-sturted comparison group. These findings show that psychosocial stimulation early in childhood in disadvantaged settings can have substantial effects on labor market outcomes and reduce later life negality. Psychol Sci. 2013 Sep 1;24(9):1837-41. doi: 10.1177/0956797613476045. Epub 2013 Jul 10.

Women are more likely to wear red or pink at peak fertility.

Beall AT, Tracy JL. University of British Columbia.

Abstract

Although females of many species closely related to humans signal their fettle window in an observable memore, often involving red or pink coloration, no such display has been found for humans. Building on evidence that men are sexually altracted to women wearing or surrounded by red, we tested whether women show a behavioral tendency: loward wearing redshift oliciting when the peak fettility. Across two samples (N = 124), women at high conception risk were more than 3 times more likely to wear a red or pink shift than were women at low conception risk, and 77% of women who were ared or pink were found to be at high, rather than low, risk. Conception risk, and or fields on the worelence of any other shift color. Our results thus suggest that red and pink adomment in women is reliably associated with fettility and that female outlend, tong associated with salient visual cue.

Psychological Science

Keep Your Fingers Crossed!: How Superstition Improves Performance Lysann Damisch, Barbara Stoberock, Thomas Mussweller

First Published May 28, 2010 | Research Article | Find in PubMed https://doi.org/10.1177/0956797610372631

Article information ~ (🖉

CICS RODRIGEN STREET

Abstract

Superstitions are typically seen as inconsequential creations of irrational minds. Nevertheless, many peopler eiyo on superstitiuos thoughts and practices in their daily routines in order to gain good luck. To date, little is known about the consequences and potential benefits of such superstitions. The present research closes this gap by demonstrating performance benefits of superstitions and identifying their underlying psychological mechanisms. Specifically, Experiments 1 through 4 show that activuting good-luck-related superstitions via a common saying or action (e.g., "break a leg," keeping one's fingers crossed) or a luck) cham improves subsequent performance in golfing, motor dexterity,

The Fluctuating Female Vote: Politics, Religion, and the Ovulatory Cycle

Psychological Science XXXO 1-10 0 The Author(s) 2013 Repetites and permissions suggebth court, for the permissions may DOI: 10.1177/0956797612466416 psc.suggepth.com SSAGE

Kristina M. Durante¹, Ashley Rae¹, and Vladas Griskevicius² 'college of Business, University of Texas, San Antonio, and 'Carlson School of

¹College of Business, University of Texas, San Antonio, and ²Carlson School of Management, University of Minnesota

Abstract

Each month, many women experience an ovalueory cycle that regulates fertility. Although research has found that this cycle althouses women's maing preferences, we proposed that it might also change women's polician and religious views. Building on theory suggesting that political and religious orientation are linked to reproducive goals, we used with large and diverse samples, ovaluation that distactionally different effects on signature that the relation of the samples of the samples of the samples samples are samples of the relationships. Ovalation led single women to become more liberal, less religious, and more likely to vote for Harack domain. In contrast, ovalation led women of the samples of the samples are conserving wome religious, and more likely to vote for Marack Theorem is nonsitivated relations includes that are conserved women religious and directly for samples women to have comen in cellulation includes that the policic bail also species to do women and the samples are samples. The samples is the samples are samples are policic bailes are possible to the same more conservative, more religious, and more likely to vote for Marack differently for single women then for women in relationships.

Activity

Discuss effects in the context of a social science example

- 1. Consider a topic of interest
- 2. Consider an outcome measure and hypothesize a treatment effect
- 3. Construct a hypothetical experiment
- 4. Specify sample size
- 5. Hypothesize distribution of outcomes under control and treatment
- 6. Figure out estimate and standard error
- 7. Will the experiment give a reliable estimate?

Discuss reading and homework

Computer demonstration

Drill

A basketball player takes n shots. The shots are independent and she has a 30% chance of making each shot. Let y be the number of shots she makes. What are the mean and standard deviation of y? Sketch the distribution of y.

Drill

Sample size and standard errors

How large does n have to be so that your estimate has a standard error of ...?

Discussion problem

Approximate standard error for average "feeling thermometer" ratings

From American National Election Study: "I'd like to get your feelings toward some of our political leaders and other people who are in the news these days. I'll read the name of a person and I'd like you to rate that person using something we call the feeling thermometer. Ratings between 50 degrees and 100 degrees mean that you feel favorable and warm toward the person. Ratings between 0 degrees and 50 degrees mean that you don't feel favorable toward the person and that you don't care too much for that person. You would rate the person at the 50 degree mark if you don't feel particularly warm or cold toward the person."

Class 3b: Simulation

Story

The proportion of identical twins in the population

- Probability of fraternal twins: 1/125
- Probability of identical twins: 1/300
- How do we know this?

Activity
Real vs. fake coin flips

- 1. Instructor and two judges leave the room
- 2. Group A: Create a sequence of 100 real coin flips
- 3. Group B; Create a sequence of 100 real coin flips
- 4. Group C; Create a fake sequence of 0's and 1's that looks like 100 coin flips
- 5. Group D; Create a fake sequence of 0's and 1's that looks like 100 coin flips
- 6. Groups A and B write sequences on one board; groups C and D write on the other board
- 7. We return and figure out which is which!

Real vs. fake coin flips

..

Discuss reading and homework

Computer demonstration

Drill

Propagation of uncertainty

A man applies for *n* jobs. For each job he has a p_1 chance of getting an interview. If he is interviewed, he has a p_2 chance of getting an offer. Write an R function to simulate this process and compute the number of offers he gets. The function should take *n*, p_1 , and p_2 as inputs and return a single number.

Discussion problem

Simulate a mixed discrete/continuous distribution

Simulate the incomes of a hypothetical set of 100 people where there is a probability of zero income and a lognormal distribution otherwise. Class 4a: Background on regression modeling

Story

1948-2020:

Median MAD_SD (Intercept) 46.7 1.4 growth 2.8 0.6

```
Auxiliary parameter(s):
Median MAD_SD
sigma 3.7 0.7
```

1948-1988: 1992-2020: Median MAD_SD Median MAD_SD (Intercept) 44.8 2.7 (Intercept) 48.4 1.5 growth 3.5 1.0 growth 1.6 1.1 Auxiliary parameter(s): Auxiliary parameter(s): Median MAD SD Median MAD SD sigma 4.5 1.2 sigma 2.8 0.8

Activity

house
theory
train
prose
government
art
song
nation
baseball
flock

house
theory
train
prose
government
art
song
nation
baseball
flock

cloth	boundary
lizard	drain
hook	health
wheel	wax
school	car
fight	lace
string	class
wave	woman
garden	army
division	fold

cloth	boundary
lizard	drain
hook	health
wheel	wax
school	car
fight	lace
string	class
wave	woman
garden	army
division	fold

Discuss reading and homework

Computer demonstration

Drill

Regression to the mean

What is the student's expected score on the post-test?

Discussion problem

Understanding uniform partisan swing (considering regression to the mean)

National elections approximately follow uniform partisan swing at the national and local levels, typically with only small changes from year to year. But over a 20-year period there can be big changes. How can these patterns in the U.S. and elsewhere be understood? Is the concept of regression to the mean relevant here? Class 4b: Linear regression with a single predictor

Story

Two sources of uncertainty

Activity

African countries in the United Nations

Answer the two questions on the survey form, then enter your responses into the Google form.

African countries in the United Nations

Discuss reading and homework

Computer demonstration

Drill
Sketch a fitted regression model

Sketch the regression line and data that match both the fitted model and the residual standard deviation.

Discussion problem

How large was the sample size?

Regression predicting final from midterm exam score:

Median MAD_SD (Intercept) 24.8 1.4 midterm 0.5 0.1

Auxilia	ary param	eter(s):
	Median	MAD_SD
sigma	11.6	0.3

Approximately what was the sample size of this regression?

Class 5a: Fitting regression models

Story

Does having a girl make you more conservative or more liberal?

Study #1: "Using nationally-representative data from the [1994] General Social Survey, we find that female offspring induce more conservative political identification. We hypothesize that this results from the change in reproductive fitness strategy that daughters may evince."

Study #2: "We document evidence that having daughters leads people to be more sympathetic to left-wing parties. Giving birth to sons, by contrast, seems to make people more likely to vote for a right-wing party. Our data, which are primarily from Great Britain, are longitudinal. We also report corroborative results for a German panel." Does having a girl make you more conservative or more liberal?

Headlines:

- "The Effect of Daughters on Partisanship and Social Attitudes Toward Women"
- "Does Having Daughters Make You More Republican?"
- "Parents With Daughters Are More Likely To Be Republicans, Says New Study"
- "Parents Of Daughters Lean Republican, Study Shows"
- "The Daughter Theory: Does Raising Girls Make Parents Conservative?"

What's missing there?

Activity

In pairs, simulate and recover regression lines

- Student #1:
 - 1. Create fake data from the model, y = a + bx + error
 - 2. Put x and y in a data frame called data
 - Type library("rstanarm")
 - 4. Type ctrl-L to clear the R console
 - Type range(data\$x)
- Student #2:
 - 1. Take the computer
 - 2. Fit the regression of y on x using stan_glm
 - 3. Sketch (not on the computer) your guess of the scatterplot of x and y

Discuss reading and homework

Computer demonstration

Drill

Sample size and standard errors

```
stan_glm
family: gaussian [identity]
formula: earn ~ height
observations: 1816
predictors: 2
_ _ _ _ _ _
           Median MAD_SD
(Intercept) -85000 9000
height
             1600 100
Auxiliary parameter(s):
     Median MAD_SD
sigma 22000
              400
```

Averages and comparisons as regression models

For each statement, express it as a regression in R code and algebra, and give the estimated regression coefficients.

Discussion problem

You run an experiment on 200 people and get an estimated treatment effect of 0.20 with standard error 0.15. So, not quite "statistically significant." What might you expect to see if you re-ran with 400 people? Would you expect statistical significance then?

Class 5b: Prediction and Bayesian inference

Story

Studying fairness of random exams

- Students randomly assigned to exams
- Average scores:
 - ▶ 65 for exam A
 - ▶ 71 for exam B
- Should we adjust the students' scores?

Activity

Coverage of prediction intervals

Uncertain quantity	25% lower bound	75% upper bound
% Black		
# eggs		
# airline deaths		
% girl births		
# babies born		
# abortions		
% degrees in CS		
# degrees		
# Super Bowl watchers		
\$ median income		

Coverage of prediction intervals

Uncertain quantity	25% bound	75% bound	TRUTH!
% Black			12.4
# eggs			64.6 billion
# airline deaths			299
% girl births			48.8
# babies born			4.06 million
# abortions			857 000
% degrees in CS			4.4
# degrees			2.01 million
# Super Bowl watchers			101.3 million
\$ median income			67 500

Coverage of prediction intervals

Discuss reading and homework

Computer demonstration

Drill

Prediction

```
stan_glm
family: gaussian [identity]
formula: earn ~ height
 observations: 1816
predictors: 2
           Median MAD_SD
(Intercept) -85000
                    9000
height
             1600
                     100
Auxiliary parameter(s):
     Median MAD SD
sigma 22000
              400
```

Approximately what is the predictive distribution from this regression of the earnings of a person who is ...?

Discussion problem

Interpreting statistically significant results given huge sample sizes

Suppose you run a regression with a huge sample size, for example a mega-poll with 100 000 respondents or an A/B test at a big company. With a large enough sample size, the standard error will be very small, and so even a very small effect can be statistically significant. How can you interpret such a result? Class 6a: Linear regression with multiple predictors

Story

Predicting Democratic vote share in U.S. House elections in 1988, given incumbency,

- $\left\{ \begin{array}{ll} +1 & \text{for districts where a Democrat was running for reelection} \\ 0 & \text{for open seats} \\ -1 & \text{for districts where a Republican was running for reelection} \end{array} \right.$

	Median	MAD_SD
(Intercept)	0.50	0.00
inc88	0.17	0.01

Auxiliary parameter(s): Median MAD SD sigma 0.08 0.00

Predicting Democratic vote share in U.S. House elections in 1988, given incumbency.

- $\left\{ \begin{array}{ll} +1 & \text{for districts where a Democrat was running for reelection} \\ 0 & \text{for open seats} \\ -1 & \text{for districts where a Republican was running for reelection} \end{array} \right.$

and Democratic vote share in 1986:

	Median	MAD_SI
(Intercept)	0.23	0.02
inc88	0.09	0.01
v86	0.53	0.04

```
Auxiliary parameter(s):
      Median MAD SD
sigma 0.07 0.00
```

Compare the two models:

 Median
 MAD_SD

 (Intercept)
 0.50
 0.00

 inc88
 0.17
 0.01

Auxiliary parameter(s): Median MAD_SD sigma 0.08 0.00
 Median
 MAD_SD

 (Intercept)
 0.23
 0.02

 inc88
 0.09
 0.01

 v86
 0.53
 0.04

Auxiliary parameter(s): Median MAD_SD sigma 0.07 0.00

Predicting Democratic vote share in U.S. House elections in 2020, given incumbency,

- $\left\{ \begin{array}{ll} +1 & \text{for districts where a Democrat was running for reelection} \\ 0 & \text{for open seats} \\ -1 & \text{for districts where a Republican was running for reelection} \end{array} \right.$

and Democratic vote share in 2018:

	Median	MAD_SI
(Intercept)	0.03	0.01
inc2020	0.02	0.00
v2018	0.89	0.02

Auxiliary parameter(s): Median MAD_SD sigma 0.03 0.00

Compare the two time periods:

1986-1988 2018-2020 Median MAD_SD Median MAD_SD (Intercept) 0.23 0.02 (Intercept) 0.03 0.01 0.09 0.01 inc2020 0.02 0.00 inc88 v86 0.53 0.04 v2018 0.89 0.02 Auxiliary parameter(s): Auxiliary parameter(s): Median MAD SD Median MAD SD sigma 0.07 0.00 sigma 0.03 0.00
Incumbency advantage in congressional elections

Activity

friend	verse
cloth	curtain
metal	attempt
comparison	size
balloon	match
tiger	form
cable	maid
dress	expansion
worm	goose
mother	liquid

For second memory quiz:

- If the last digit of your Social Security number is odd, you'll get 30 seconds
- If the last digit of your Social Security number is even, you'll get 60 seconds

friend	verse
cloth	curtain
metal	attempt
comparison	size
balloon	match
tiger	form
cable	maid
dress	expansion
worm	goose
mother	liquid

power	snail
screw	cake
curve	unit
writing	driving
sister	hair
baby	scarecrow
cry	discussion
collar	channel
trousers	sheep
brick	ocean

- x: Score on first memory quiz
- ► z: Treatment (z = 1 if you got 60 seconds, z = 0 if you got 30 seconds)
- y: Score on second memory quiz

Consider two regression models predicting y from x and z:

▶ y ~ x + z + x*z

power	snail
screw	cake
curve	unit
writing	driving
sister	hair
baby	scarecrow
cry	discussion
collar	channel
trousers	sheep
brick	ocean

Discuss reading and homework

Computer demonstration

Drill

Interpret interaction coefficients

For each model, describe each coefficient in words.

Discussion problem

What is gained by including a pre-test?

Consider a randomized experiment:

- Regression of post-test on treatment: y ~ z
- \blacktriangleright Regression of post-test on treatment and pre-test: y ~ z + x What is gained by adjusting for pre-test?

Class 6b: Assumptions, diagnostics, and evaluation

Story

Actual vs. guessed exam scores

Actual vs. guessed exam scores

Actual vs. guessed exam scores

Activity

Assumptions of regression

- 1. Validity
- 2. Representativeness
- 3. Additivity
- 4. Linearity
- 5. Independence of errors
- 6. Equal variance of errors
- 7. Normality of errors

Discuss reading and homework

Computer demonstration

Drill

Assumptions of regression and and how they can fail

Consider a regression fit to a set of different countries, predicting the rate of some illegal behavior (for example, tax evasion or speeding) given country-level predictors (per-capita income, average education level, etc.). For each assumption, give an example of how it can fail. Discussion problem

Consider the implications of regression assumptions for a real-world study

- 1. Validity
- 2. Representativeness
- 3. Additivity
- 4. Linearity
- 5. Independence of errors
- 6. Equal variance of errors
- 7. Normality of errors

Class 7a: Transformations and regression

Story

Price elasticity of demand

log(demand) = a + b * log(price)

Activity

Combining predictors to create a total score

- 1. Construct several questions to measure an underlying construct of interest
- 2. Use these to create a combined score

Discuss reading and homework

Computer demonstration

Drill

Examples of exponential growth and decline

Examples of exponential growth and decline
Discussion problem

Class 7b: Review of statistics and linear regression

Story

Measure	M	SD
1. Team performance (points)	393.30	320.12
2. Top-talent percentage	7%	16%
3. Roster size	18.53	6.79
4. Games played	8.90	4.65

Activity

Experiment with self-selected treatment assignment

Age, sex, interest in sports, theater, cooking, politics

Choice of vignette:

Sports vignette:

William is on the varsity soccer team. The night before an important final exam, the coach calls up to remind him of an upcoming practice. The next day, William goes to the practice and misses the exam without notifying the instructor. With a zero on the final exam, William would fail the class. The instructor allows him to take a makeup exam but will only give him partial credit. If you were the instructor, how much credit (between 0 and 100%) would you give for the makeup exam?

Theater vignette:

William is in the university theater program. The night before an important final exam, the director calls up to remind him of an upcoming rehearsal. The next day, William goes to the rehearsal and misses the exam without notifying the instructor. With a zero on the final exam. William would fail the class. The instructor allows him to take a makeup exam but will only give him partial credit. If you were the instructor, how much credit (between 0 and 100%) would you give for the makeup exam?

Discuss reading and homework

Computer demonstration

Drill

Log transformations

For each of example, express the underlined coefficient as a comparison, first on the transformed scale, then on the untransformed scale.

Discussion problem

Causal inference and adjustment for context

- 1. Consider a causal question of interest to you.
- 2. Consider how the effect of interest could vary across the population, over time, or based on context.
- 3. What statistical adjustments could be done when generalizing from an experiment to more general settings?

Class 8a: Logistic regression

Story

Item-response analysis of final exams

Item-response analysis of final exams

Item-response analysis of final exams

Activity

Two truths and a lie

Within your group:

- 1. One person tells three personal statements, one of which is a lie.
- 2. Others discuss and guess which statement is the lie, and they give an estimate of their certainty in the guess (on a 0-10 scale).
- 3. The storyteller reveals which was the lie.
- 4. Enter the certainty estimate and the outcome (success or failure) and submit in the Google form.

Rotate through everyone in your group so that each person plays the storyteller role once.

Certainty	Outcome
8	Success
4	Success
7	Failure
5	Success

Example data:

Two truths and a lie

Coefficient	Estimate (s.e.)
Intercept	0.23 (0.77)
Slope	-0.08 (0.15)

Discuss reading and homework

Computer demonstration

Drill

Divide-by-4 rule

For each of the following models, calculate the halfway point (where the predicted probability is $\frac{1}{2}$) as well as the curve's steepest slope, using the divide-by-4 rule.

Discussion problem

Real-world example of logistic regression

Give an example of logistic regression, other than the examples we've considered in class or the readings.

Class 8b: Working with logistic regression

Story

Two models of voting on social issues:

- Opiate of the masses: Rich people vote their interests; poor people vote "Gods, guns, and gays."
- Postmaterialism: Poor people vote based on economics; rich people have the luxury to vote on social issues.

family:	<pre>binomial [logit]</pre>
formula:	<pre>trump ~ church +</pre>
income100 +	church:income100
observations:	6313
predictors:	4
	Median MAD_SD

-0.65	0.07
0.22	0.03
-0.27	0.06
0.08	0.02
	-0.65 0.22 -0.27 0.08

family:	binomial [logit]	fam
formula:	trump ~ church +	for
income100 +	church:income100	c_i
observations:	6313	obs
predictors:	4	pre

Median	MAD_SD
-0.65	0.07
0.22	0.03
-0.27	0.06
0.08	0.02
	Median -0.65 0.22 -0.27 0.08

family: binomial [logit] formula: trump ~ c_church + c_income100 + c_church:c_income100 observations: 6313 predictors: 4

```
Median MAD_SD
```

(Intercept)	-0.25	0.03
c_church	0.28	0.02

```
c_income100 -0.10 0.04
```

```
c_church:c_income100 0.08 0.02
```


Activity

Job training programs and average predictive comparisons

- x: Pre-treatment employment history (0–10 scale)
- z: Treatment indicator
- y: Outcome: 1 if employed at the end of the study or 0 otherwise

Logistic regression, $Pr(y = 1) = logit^{-1}(a + bx + \theta z)$

Discuss reading and homework

Computer demonstration

Drill

Understanding the logistic function

For each example, fill in the blanks in the formula, $Pr(y = 1) = logit^{-1}(- + x).$ Discussion problem

Experimental design for logistic regression

Suppose a certain disease has a 20% mortality rate, and a new drug is hypothesized to reduce the mortality rate to 10%. Frame this as a logistic regression, and suppose a randomized experiment is performed with n/2 people getting the treatment and n/2 getting the control. How large must n need to be so that the uncertainty in the estimated treatment effect is low enough that we can be nearly certain of correctly identifying its beneficial effect?

Class 9a: Design and sample size decisions

Story

Lucky golf balls and implausible effect sizes

From a published paper: "We recruited 28 university students (12) males, 16 females) as participants and randomly assigned them to a superstition-activated or a control condition. Participants were asked to engage in a 10-trial putting task. A pretest revealed that more than 80% of our participant population believed in good luck, so to activate the superstition, we linked the concept of good luck to the ball participants used during the task. Specifically, while handing the ball over to the participants, the experimenter said, 'Here is your ball. So far it has turned out to be a lucky ball' (superstition-activated condition) or 'This is the ball everyone has used so far' (control condition). Finally, participants performed the required 10 putts from a distance of 100 cm.

We used the number of hits as our central dependent measure, with 'hits' defined as successful putts (when the ball actually ended up where it was supposed to be). As predicted, participants performed better when playing with an ostensibly lucky ball (M = 6.42, SD = 1.88) rather than a neutral ball (M = 4.75, SD = 2.15)."

Lucky golf balls and implausible effect sizes

Original: "Participants were asked to engage in a 10-trial putting task ... from a distance of 100 cm. We used the *number of hits* as our central dependent measure. As predicted, *participants* performed better when playing with an ostensibly lucky ball rather than a neutral ball."

Alternative: "All participants were asked to engage in a 15-trial putting task from a distance of 150 cm. As our central dependent measure, we used total success, defined as more than half the attempted putts ending up where they were supposed to be. Consistent with our hypothesis, participants who believed in luck performed better when playing with an ostensibly lucky ball, while there was no difference among those expressed no belief in luck."

Lucky golf balls and implausible effect sizes

Activity

Sample size calculation for a hypothetical study of left-handedness

	Sample	Percentage
Course of study	size	left-handed
Behavioral sciences	90	8.89%
Humanities	51	9.80%
Sciences	92	4.35%
Other arts and sciences	156	7.05%
Business	241	9.54%
Music	47	14.89%
Design and art	147	12.24%
Engineering	75	10.67%
Nursing	71	4.23%
Other	75	9.38%

Sample size calculation for a hypothetical study of left-handedness

	Sample	Percentage	\pm standard
Course of study	size	left-handed	error
Behavioral sciences	90	9%	±3%
Humanities	51	10%	±4%
Sciences	92	4%	±2%
Other arts and sciences	156	7%	±2%
Business	241	10%	±2%
Music	47	15%	$\pm 5\%$
Design and art	147	12%	±3%
Engineering	75	11%	±2%
Nursing	71	4%	±4%
Other	75	9%	±3%

Discuss reading and homework

Computer demonstration

Drill

Sample size calculations: proportions

Calculate the sample size needed to achieve the stated statistical goal.

Discussion problem

Choosing a survey design to estimate question-wording effects

Compare two options:

- Within-subject design: Put the two different wordings on the same survey form (randomizing the order of the two questions) and compare responses to the two wordings.
- Between-subject design: Randomly give one wording to half the respondents and the other wording to the other half.

Class 9b: Poststratification and missing-data imputation

Story

Using MRP to estimate public opinion by state

THE REAL TIMES	Log in	Subscribe	Search
FRIDAY JANUARY 7 2022	8		

MRP election poll: Boris Johnson heads for big majority

Corbyn to reshape election strategy as survey predicts Tories will win 359 seats, Labour 211

The MRP poll predicts a big win for the Tories - is it right?

Major YouGov poll points to comfortable 68-seat majority for Boris Johnson on 12 December

Using MRP to estimate public opinion by state

Consider 4 MRP models:

- 1. No state-level predictors
- 2. Republican vote share as a state-level predictor
- 3. Percent rural as a state-level predictor.
- 4. Include Republican vote share and percent rural as two state-level predictors

Activity

Experimental design and effect sizes

- 1. z <- sample(rep(c(0, 10), c(n/2, n/2)), n)
- 2. z <- sample(rep(c(0, 50), c(n/2, n/2)), n)
- 3. $z \le sample(rep(c(0, 200), c(n/2, n/2)), n)$
- 4. z <- sample(rep(c(0, 5, 10), c(n/3, n/3, n/3)), n)
- 5. z <- sample(rep(c(0, 25, 50), c(n/3, n/3, n/3)), n)
- 6. z <- sample(rep(c(0, 100, 200), c(n/3, n/3, n/3)), n)
- 7. z <- sample(runif(n, 0, 10))
- 8. z <- sample(runif(n, 0, 50))
- 9. z <- sample(runif(n, 0, 200))

Discuss reading and homework

Computer demonstration

Drill

Methods for imputation

Give an advantage and a disadvantage of each of the following approaches for imputing missing responses for a question in a survey, and come up with a scenario in which you would be comfortable using it.
Discussion problem

Network sampling

- A researcher at Columbia University's School of Social Work wanted to estimate the prevalence of drug abuse problems among American Indians (Native Americans) living in the New York City area.
- She did not have a list of the population, so instead she planned to obtain a sample using network sampling.
- Challenges of sampling and adjustment to the population.

Class 10a: Causal inference and randomized experiments

Story

Treatment effect depends on the population: coronavirus example

Hypothetical scenario of 1000 people:

- 300 would live either way
- 450 would die either way
- 250 would be saved by the treatment

Average treatment effect: 25 percentage points

Activity

Potential outcomes and treatment assignments for basketball training

Potential outcomes, y:

▶ y^1 : number of free throws you make out of 50 tries, if z = 1

▶ y^0 : number of free throws you make out of 50 tries, if z = 0Treatment, z:

- z = 1: practice for 15 minutes each day for a month
- z = 0: no practice

Pre-treatment predictors, x:

- Age
- Self-assessed athleticism (on 1–10 scale)

Discuss reading and homework

Computer demonstration

Drill

Average treatment effects

```
formula:
            post_test ~ z + pre_test + z:pre_test
 observations: 100
predictors:
           - 3
          Median MAD SD
(Intercept) 23.6 10.9
7.
    10.4 4.0
pre_test 0.7 0.2
z:pre_test -0.4 0.3
Auxiliary parameter(s):
     Median MAD_SD
sigma 20.1 1.4
```

You also have a data frame, pop, representing the population.

Give R code to estimate different average treatment effects:

Discussion problem

Randomization and ethics

Ethical challenges in a medical experiment:

- The experimental treatment could be risky.
- If the new treatment is believed to be better, it could seem unfair to give someone the control.
- What standard of evidence should be required for the treatment to be deemed effective enough to be approved for public use?
- How to balance risks and benefits?
- What if a new treatment is very slightly more effective but much more expensive?

Class 10b: Causal inference using regression on treatment

Story

Pest control experiment: estimating a multiplicative treatment effect

Potential outcomes, y:

• y^1 : number of roaches in your apartment, if z = 1

► y^0 : number of roaches in your apartment, if z = 0Treatment, z:

- z = 1: cleaning/poison/sealing and pest control advice
- z = 0: pest control advice

Pre-treatment predictor, x:

Number of roaches measured before treatment

Activity

Understand the "average treatment effect"

- ▶ Reported effect size: 0.1 points of grade point average
- Equivalent to a 1 point effect on 10% of people
- In pairs, come up with examples of individual and average effects

Understand the "average treatment effect"

Understand the "average treatment effect"

Drill

Average treatment effect and poststratification

For each model,

- Give R code to compute the sample average treatment effect, ignoring any uncertainty in the coefficient estimates
- z is a binary variable and you want to compare z = 0 to z = 1
- Assume that the data for the regression are in a data frame, expt

Discussion problem

A published claim: "Education is an important determinant of income—one of the most important—but it is less important than most people think. If everyone had the same education, the inequality of income would be reduced by less than 10%. When you focus on education you neglect the myriad other factors that determine income. The differences of income among people who have the same education are huge."

What's wrong with the above statement?

Class 11a: Causal inference

Story

The Freshman Fallacy and interactions

Me: "[There is a problem with] representativeness. What color clothing you wear has a lot to do with where you live and who you hang out with. Participants in an Internet survey and University of British Columbia students aren't particularly representative of much more than ... participants in an Internet survey and University of British Columbia students."

An angry psychology professor: "Complaining that subjects in an experiment were not randomly sampled is what freshmen do before they take their first psychology class. I really *hope* you [know] why that is an absurd criticism-especially of authors who never claimed that their study generalized to all humans. (And please spare me 'but they said men and didn't say THESE men' because vou said there were problems in social psychology and didn't mention that you had failed to randomly sample the field. Everyone who understands English understands their claims are about their data and that your claims are about the parts of psychology you happen to know about)."

The Freshman Fallacy and interactions

- 1. Essentially no effect, with patterns in data coming from noise or measurement artifacts
- 2. Large and variable effects that depend strongly on the person and context
- 3. Large and consistent effects

Activity

Components of an observational study

- 1. Population
- 2. Sample
- 3. Pre-treatment measurement, x
- 4. Treatment or exposure, z
- 5. Treatment assignment rule
- 6. Outcome, y

Discuss reading and homework

Computer demonstration

Drill

Adjusting for post-treatment variables

For each hypothetical analysis, explain the problem with adjusting for post-treatment variables, and how this could be fixed.

Discussion problem

Individual and average effects

A published claim: "By some estimates, one or two patients died per week in a certain smallish town because of the lack of information flow between the hospital's emergency room and the nearby mental health clinic. In other words, if the records had been easier to match, they'd have been able to save more lives. On the other hand, if it had been easy to match records, other breaches of confidence might also have occurred. Of course it's hard to know exactly how many lives are at stake, but it's nontrivial."

How plausible is the above claim?
Class 11b: Observational studies with measured confounders

Story

Retrospective controlled evaluation of a policy experiment

Our summary: "The MVP had favourable impacts on outcomes in all MDG [Millennium Development Goal] areas, consistent with an integrated rural development approach. The greatest effects were in agriculture and health, suggesting support for the project's emphasis on agriculture and health systems strengthening."

A different group: "Our study finds that the impact of MVP on the MDGs was limited, and that core welfare indicators such as monetary poverty, child mortality and under-nutrition were not affected.... despite some positive impacts, we found mostly null results, suggesting that the intervention was ineffective."

Activity

Imbalance and lack of overlap

Discuss an example of real-world imbalance and lack of overlap.

Discuss reading and homework

Computer demonstration

Drill

Ignorability of treatment assignment

In the following cases of observational studies, discuss possible problems with the assumption of ignorability of the treatment assignment, conditional on the pre-treatment predictors and with respect to the potential outcomes. Discussion problem

Variation in social science patterns

A published claim: "Sports participation causes women to be less religious, more likely to have children, and, if they do have children, more likely to be single mothers."

From authors' discussion: "It is true that many successful women with professional careers, such as Sheryl Sandberg and Brandi Chastain, are married. This fact, however, is not necessarily opposed to our hypothesis. Women who participate in sports may 'reject marriage' by getting divorces when they find themselves in unhappy marriages. Indeed, Sheryl Sandberg married and divorced before marrying her current husband." Class 12a: Additional topics in causal inference

Story

Age in months relative to age 20

Activity

Gather, plot, and discuss two measurements of the same underlying quantity from students

- 1. Come up with two ways of measuring a single characteristic using continuous or approximately continuous scales.
- 2. Everyone enters their data on to the Google form.
- 3. In pairs, discuss what the scatterplot might look like. Sketch guesses.
- 4. Compare to your actual data.

Discuss reading and homework

Computer demonstration

Drill

For each example, evaluate these assumptions for instrumental variables estimation:

- Ignorability of the instrument
- Monotonicity and nonzero association between instrument and treatment variable
- Exclusion restriction.

Discussion problem

Estimating the effects of masks and social distancing

During the covid epidemic, people were not assigned at random to wear masks or to practice social distancing, but they were indirectly affected by national, state, and local policies mandating these actions.

- 1. Discuss how you might use instrumental variables to estimate these effects from available data on state-level policies, compliance, and outcomes.
- 2. Consider potential objections to such analyses.
- 3. Discuss possible data that could be gathered to better estimate the effects of interest.

Class 12b: Advanced regression and multilevel models

Story

Nonlinear modeling for data exploration

Nonlinear modeling for data exploration Raw data

Nonlinear modeling for data exploration

Raw data with loess fit

Nonlinear modeling for data exploration

Raw data with separate loess fits

Activity

Nonlinear treatment effect

- 1. Come up with a story with a pre-test measurement x, a treatment effect that is a non-monotonic effect of x, and potential outcomes y_0 , y_1 , under the control and treatment.
- 2. In pairs, sketch the expected value of y_0 and y_1 given x.
- 3. Come up with mathematical formulas to approximate these curves.
- 4. Simulate x, then z, then y.
- 5. Estimate the average treatment effect using a linear model fit to different subsets of the data.

Discuss reading and homework

Computer demonstration
Drill

Each of these functions is defined for positive values of x. Sketch each function using pen on paper, labeling the axes appropriately.

Discussion problem

Noisy time series

Class 13a: Review of the course

Story

The rise and fall and rise of randomized controlled trials in international development

From an article from 2019: "What could explain the rise of RCTs [randomized controlled trials] in international development? ... we are witnessing now a second wave of RCTs in international development, while a first wave of experiments in family planning, public health, and education in developing countries began in the 1960s and ended by the early 1980s....

Instead of asking, 'why are RCTs increasing now?' we ask, 'why didn't RCTs spread to the same extent in the 1970s, and why were they discontinued?' In other words, how we explain the success of the second wave must be consistent with how we explain the failure of the first."

Activity

Design a paper helicopter

Design a paper helicopter

Discuss reading and homework

Computer demonstration

Drill

Consider the following model of price x and sales y: when the price is \$20, sales are 2000 units, and for every 1% increase in price, sales decrease by 0.8%. Write this model as a formula.

You are planning to conduct a random sample survey of n people in a country in which 80% of the population are native born and 20% are immigrants. As part of the analysis you plan to compare these two groups in their percentage who support more restrictive immigration laws. Suppose you want to estimate this difference to within a standard error of 5 percentage points. How large does nneed to be?

Write R code to fit a linear regression with predictors x_1 , x_2 , x_3 , and all their two-way interactions.

List at least four of the assumptions of linear regression, in decreasing order of importance.

Discussion problem

Designing an experiment using simulation

Suppose you want to design an experiment to estimate the effects of canvassing on voter turnout in an upcoming election. You have records on a large number of registered voters, with data on their past voter turnout, and your plan is to randomly select n people from this database and randomly chose n/2 to be contacted and encouraged to vote. You will then follow up after the election and see who actually voted.

- 1. Start with a guess of n.
- 2. Run a simulation, making assumptions as needed.
- 3. Use the simulations to compute the standard deviation of your estimate.
- 4. Scale up or down to pick n for your study.

Class 13b: Review of the course

Story

The Harvard study claiming North Carolina is less democratic than North Korea

The Harvard study claiming North Carolina is less democratic than North Korea

Electoral laws	53
Electoral procedures	73
District boundaries	73
Voter registration	83
Party and candidate registration	54
Media coverage	78
Campaign finance	84
Voting process	53
Vote count	74
Results	80
Electoral authorities	60

The Harvard study claiming North Carolina is less democratic than North Korea

From the project director: "The map identifies North Korea and Cuba as having moderate quality elections. The full report online gives details on how to interpret this. It does not mean that these countries are electoral or liberal democracies. The indicators measure expert perceptions of the quality of an election based on multiple criteria derived from international standards."

Activity

- 1. Choose a method you have learned during the semester
- 2. Review the method
- 3. Discuss where the method works and where it fails
- 4. Discuss relevance to your applied interests
- 5. Points of confusion and open questions

Discuss reading and homework

Computer demonstration

Drill

From logistic regression through causal inference

Here is the result from a fitted logistic regression:

```
family: binomial [logit]
formula: y ~ x
observations: 100
predictors: 2
-----
Median MAD_SD
(Intercept) 1.0 0.5
x -0.3 0.1
```

Suppose you define z = 20 + 10 * x. What would be the estimated coefficients of the logistic regression of y on z?

From logistic regression through causal inference

You are planning to conduct a randomized experiment with 100 people in the treatment group and 100 controls. The outcome is test scores, in a population where scores have a mean of 60 and standard deviation 15. You have a pre-test measurement, and you expect that the model fit to estimate the treatment effect will have an R^2 of 50%. Approximately what will be the standard error of the estimated treatment effect?

From logistic regression through causal inference

In an experiment you have outcome y, treatment indicator z, and a pre-test variables x in a data frame called sample. You also have x for a population of interest in a data frame called pop. Give R code to estimate the average causal effect in the population, allowing for the treatment effect to vary with x.

Discussion problem

Creating a better electoral integrity index

- 1. How would you create a better "electoral integrity index"?
- 2. How could you put North Carolina and North Korea on the same scale?
- 3. Consider issues of definition, measurement, and validation.